The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus)

Nature - Tập 452 Số 7190 - Trang 991-996 - 2008
Ray Ming1, Shaobin Hou2, Yun Feng3, Qingyi Yu1, Alexandre Dionne‐Laporte2, Jimmy H. Saw2, Pavel Senin2, Wei Wang3, Benjamin V. Ly2, Kanako L. Lewis2, Steven L. Salzberg4, Lu Feng3, M. Jones1, Rachel L. Skelton1, Jan E. Murray5, Cuixia Chen5, Wubin Qian3, Junguo Shen6, Peng Du6, Moriah Eustice1, Eric Tong1, Haibao Tang7, Eric Lyons8, Robert E. Paull9, Todd P. Michael10, Kerr Wall11, Danny W. Rice12, Henrik H. Albert13, Ming Li Wang1, Yun Zhu1, Michael C. Schatz4, Niranjan Nagarajan4, Ricelle A. Acob1, Peizhu Guan1, Andrea L. Blas14, Ching Man Wai1, C. Ackerman1, Yan Ren3, Chao Liu3, Jianmei Wang3, Jianping Wang5, Jong Kuk Na5, Eugene V. Shakirov15, Brian J. Haas16, Jyothi Thimmapuram17, David R. Nelson18, Xiyin Wang7, John Bowers7, Andrea R. Gschwend5, Arthur L. Delcher4, Ratnesh Singh14, Jon Y. Suzuki13, Savarni Tripathi13, Kabi R. Neupane19, Hairong Wei20, Beth Irikura9, Maya Devi Paidi14, Ning Jiang21, Wenli Zhang22, Gernot G. Presting14, Aaron J. Windsor23, Rafael Navajas‐Pérez7, M. Torres7, F. Alex Feltus7, Brad W. Porter14, Yingjun Li5, A. Max. Burroughs4, Ming‐Cheng Luo24, Бо Лю17, David A. Christopher14, Stephen M. Mount4, Paul H. Moore13, Tak Sugimura25, Jiming Jiang22, Mary A. Schuler26, Vikki Friedman27, Thomas Mitchell‐Olds23, Dorothy E. Shippen15, Claude W. dePamphilis11, Jeffrey D. Palmer12, Michael Freeling8, Andrew H. Paterson7, Dennis Gonsalves13, Lei Wang28, M. Shahid Alam29
1Hawaii Agriculture Research Center, Aiea, Hawaii 96701, USA ,
2Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii 96822, USA ,
3TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin 300457, China ,
4Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland 20742, USA ,
5Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
6Tianjin Research Center for Functional Genomics and Biochip, Tianjin Economic-Technological Development Area, Tianjin 300457, China ,
7Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA ,
8Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
9Department of Tropical Plant and Soil Sciences, University of Hawaii, Honolulu, Hawaii 96822, USA,
10Waksman Institute of Microbiology and Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA,
11Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
12Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
13USDA-ARS, Pacific Basin Agricultural Research Center, Hilo, Hawaii 96720, USA
14Department of Molecular Bioscience and Bioengineering, University of Hawaii, Honolulu, Hawaii 96822, USA,
15Department of Biochemistry and Biophysics, 2128 TAMU, Texas A&M University, College Station, Texas 77843, USA,
16The Institute for Genomic Research, Rockville, Maryland 20850, USA
17W.M. Keck Center for Comparative and Functional Genomics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA ,
18Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163, USA,
19Leeward Community College, University of Hawaii, Pearl City, Hawaii 96782, USA ,
20Wicell Research Institute, Madison, Wisconsin 53707, USA ,
21Department of Horticulture, Michigan State University, East Lansing, Michigan, 48824, USA
22Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706, USA
23Department of Biology, Duke University, Durham, North Carolina 27708, USA
24Department of Plant Sciences, University of California, Davis, California 95616, USA,
25Maui High Performance Computing Center, Kihei, Hawaii 96753, USA ,
26Departments of Cell and Developmental Biology, Biochemistry and Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA,
27Applied Biosystems, 850 Lincoln Centre Drive, Foster City,California 94404, USA
28Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
29Department of Microbiology, University of Hawaii, Honolulu, Hawaii 96822, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gonsalves, D. Control of papaya ringspot virus in papaya: a case study. Annu. Rev. Phytopathol. 36, 415–437 (1998)

The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana . Nature 408, 796–815 (2000)

International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 436, 793–800 (2005)

Tuskan, G. A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604 (2006)

Jaillon, C. O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007)

Arumuganathan, K. & Earle, E. D. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9, 208–218 (1991)

Fitch, M. M. M., Manshardt, R. M., Gonsalves, D., Slightom, J. L. & Sanford, J. C. Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio/technology 10, 1466–1472 (1992)

Liu, Z. et al. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427, 348–352 (2004)

Wikström, N., Savolainen, V. & Chase, M. W. Evolution of the angiosperms: calibrating the family tree. Proc. R. Soc. Lond. B 268, 2211–2220 (2001)

Storey, W. B. Papaya. in Outlines of Perennial Crop Breeding in the Tropics (eds Ferwerda, F. P. and Wit, F.) 389–408 (H. Veenman & Zonen, Wageningen, 1969)

Li, L. et al. Genome-wide transcription analyses in rice using tiling microarrays. Nature Genet. 38, 124–129 (2006)

Lander, E. S. & Waterman, M. S. Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2, 231–239 (1988)

Hanada, K., Zhang, X., Borevitz, J. O., Li, W.-H. & Shiu, S.-H. A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Res. 17, 632–640 (2007)

Bowers, J. E., Chapman, B. A., Rong, J. & Paterson, A. H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438 (2003)

Schranz, M. E. & Mitchell-Olds, T. Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell 18, 1152–1165 (2006)

Lyons, E. & Freeling, M. How to usefully compare homologous plant genes and chromosomes as DNA sequence. Plant J. 53, 661–673 (2008)

Inada, D. C. et al. Conserved noncoding sequences in the grasses. Genome Res. 13, 2030–2041 (2003)

Thomas, B. C., Rapaka, L., Lyons, E., Pedersen, B. & Freeling, M. Arabidopsis intragenomic conserved noncoding sequence. Proc. Natl Acad. Sci. USA 104, 3348–3353 (2007)

Wall, P. K. et al. PlantTribes: a gene and gene family resource for comparative genomics in plants. Nucleic Acids Res. 36, D970–D976 (2008)

Meyers, B. C., Morgante, M. & Michelmore, R. W. TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J. 32, 77–92 (2002)

Zhou, T. et al. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol. Genet. Genomics 271, 402–415 (2004)

Fry, S. C. Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol. 161, 641–675 (2004)

Ehlting, J. et al. Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J. 42, 618–640 (2005)

Zhou, L. L. & Paull, R. E. Sucrose metabolism during papaya (Carica papaya) fruit growth and ripening. J. Am. Soc. Hortic. Sci. 126, 351–357 (2001)

Paull, R. E. & Chen, N. J. Postharvest variation in cell wall-degrading enzymes of papaya (Carica papaya L.) during fruit ripening. Plant Physiol. 72, 382–385 (1983)

Richardt, S., Lang, D., Reski, R., Frank, W. & Rensing, S. A. PlanTAPDB, a phylogeny-based resource of plant transcription-associated proteins. Plant Physiol. 143, 1452–1466 (2007)

Yu, Q. et al. Low X/Y divergence of four pairs of papaya sex-liked genes. Plant J. 53, 124–132 (2008)

Yu, Q. et al. Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Mol. Genet. Genomics 278, 177–185 (2007)

Sawasaki, T., Takahashi, M., Goshima, N. & Morikawa, H. Structures of transgene loci in transgenic Arabidopsis plants obtained by particle bombardment: junction regions can bind to nuclear matrices. Gene 218, 27–35 (1998)

Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004)

Jaffe, D. B. et al. Whole-genome sequence assembly for mammalian genomes: Arachne 2. Genome Res. 13, 91–96 (2003)

Chou, H. H. & Holmes, M. H. DNA sequence quality trimming and vector removal. Bioinformatics 17, 1093–1104 (2001)

Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker (Release Open-3.1.3, 2006)

Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21 (suppl.). i351–i358 (2005)

Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003)

Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19 (suppl.). ii215–ii225 (2003)

Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004)

Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004)

Salamov, A. A. & Solovyev, V. V. Ab initio gene finding in Drosophila genomic DNA. Genome Res. 10, 516–522 (2000)

Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997)

Korf, I., Flicek, P., Duan, D. & Brent, M. R. Integrating genomic homology into gene structure prediction. Bioinformatics 17 (suppl. 1). S140–S148 (2001)

Huang, X., Adams, M. D., Zhou, H. & Kerlavage, A. R. A tool for analyzing and annotating genomic sequences. Genomics 46, 37–45 (1997)

Finn, R. D. et al. Pfam: clans, web tools and services. Nucleic Acids Res. 34 (Database issue). D247–D251 (2006)

Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res. 14, 988–995 (2004)

Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7.1–R7.19 (2008)

Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005)

Attwood, T. K. et al. PRINTS and its automatic supplement, prePRINTs. Nucleic Acids Res. 31, 400–402 (2003)

Bru, C. et al. The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Res. 33 (Database issue). D212–D215 (2005)

Hulo, N. et al. The PROSITE database. Nucleic Acids Res. 34 (Database issue). D227–D230 (2006)

Letunic, I. et al. SMART 5: domains in the context of genomes and networks. Nucleic Acids Res. 34 (Database issue). D257–D260 (2006)

Edgar, R. C. & Myers, E. W. PILER: Identification and classification of genomic repeats. Bioinformatics 21 (suppl.). i152–i158 (2005)

Li, W. & Godzik, A. CD-HIT: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, i1658–i1659 (2006)