The diversity of Bt resistance genes in species of Lepidoptera

Journal of Invertebrate Pathology - Tập 95 Số 3 - Trang 192-197 - 2007
David G. Heckel1, Linda J. Gahan2, Simon W. Baxter1, Yun Zhao3, Anthony M. Shelton3, Fred Gould4, Bruce E. Tabashnik5
1Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society
2Department of Biological Sciences, Clemson University, Clemson, SC 29665, USA
3Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456 USA
4Department of Entomology, North Carolina State University, Raleigh, NC 27695, USA
5Dept of Entomology, University of Arizona, Tucson, AZ 85721, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adang, M.J., Hua, G., Chen, J., Abdullah, M.A.F., 2005. Peptides for inhibiting insects. United States Patent Application US2005/0283857.

Baxter, S.W., 2005. Molecular and genetic analysis of Bt and spinosad resistance in diamondback moth, Plutella xylostella. PhD Thesis, University of Melbourne, Melbourne, Australia.

Baxter, 2005, Novel genetic basis of field-evolved resistance to Bt toxins in Plutella xylostella, Insect Mol. Biol., 14, 327, 10.1111/j.1365-2583.2005.00563.x

Bravo, 2004, Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains, Biochim. Biophys. Acta Biomemb., 1667, 38, 10.1016/j.bbamem.2004.08.013

Broderick, 2006, Midgut bacteria required for Bacillus thuringiensis insecticidal activity, Proc. Natl. Acad. Sci. USA, 103, 15196, 10.1073/pnas.0604865103

Carrière, 2006, Cadherin-based resistance to Bacillus thuringiensis cotton in hybrid strains of pink bollworm: fitness costs and incomplete resistance, J. Econ. Entomol., 99, 1925, 10.1603/0022-0493-99.6.1925

Dorsch, 2002, Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R-1 in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis, Insect Biochem. Mol. Biol., 32, 1025, 10.1016/S0965-1748(02)00040-1

Ferré, 1991, Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor, Proc. Natl. Acad. Sci. USA, 88, 5119, 10.1073/pnas.88.12.5119

Gahan, 2001, Identification of a gene associated with Bt resistance in Heliothis virescens, Science, 293, 857, 10.1126/science.1060949

Gahan, 2005, Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera: Noctuidae), J. Econ. Entomol., 98, 1357, 10.1603/0022-0493-98.4.1357

Gould, 1995, Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins, J. Econ. Entomol., 88, 1545, 10.1093/jee/88.6.1545

Griffitts, 2001, Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme, Science, 293, 860, 10.1126/science.1062441

Griffitts, 2003, Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin–host interactions, J. Biol. Chem., 278, 45594, 10.1074/jbc.M308142200

Griffitts, 2005, Glycolipids as receptors for Bacillus thuringiensis crystal toxin, Science, 307, 922, 10.1126/science.1104444

Gunning, 2005, New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin, Appl. Environ. Microbiol., 71, 2558, 10.1128/AEM.71.5.2558-2563.2005

Heckel, 1994, The complex genetic basis of resistance to Bacillus thuringiensis toxin in insects, Biocontrol. Sci. Technol., 4, 405, 10.1080/09583159409355351

Heckel, 2002, Mechanisms of defense against and resistance to Bacillus thuringiensis toxins, 52

Heckel, 1997, Identification of a linkage group with a major effect on resistance to Bacillus thuringiensis Cry1Ac endotoxin in the tobacco budworm (Lepidoptera: Noctuidae), J. Econ. Entomol., 90, 75, 10.1093/jee/90.1.75

Heckel, 1999, Genetic mapping of resistance to Bacillus thuringiensis toxins in diamondback moth using biphasic linkage analysis, Proc. Natl. Acad. Sci. USA, 96, 8373, 10.1073/pnas.96.15.8373

Herrero, 2005, Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes, BMC Genomics, 6

Hossain, 2005, Localization of a novel 252-kDa plasma membrane protein that binds Cry1A toxins in the midgut epithelia of Bombyx mori, Appl. Entomol. Zool., 40, 125, 10.1303/aez.2005.125

Hua, 2004, Bt-R-1a extracellular cadherin repeat 12 mediates Bacillus thuringiensis Cry1Ab binding and cytotoxicity, J. Biol. Chem., 279, 28051, 10.1074/jbc.M400237200

Janmaat, 2003, Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni, Proc. R. Soc. Lond. Ser. B, 270, 2263, 10.1098/rspb.2003.2497

Jurat-Fuentes, 2004, Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae, Eur. J. Biochem., 271, 3127, 10.1111/j.1432-1033.2004.04238.x

Jurat-Fuentes, 2004, The HevCaLP protein mediates binding specificity of the Cry1A class of Bacillus thuringiensis toxins in Heliothis virescens, Biochemistry, 43, 14299, 10.1021/bi048500i

Knight, 1995, Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis Cry1Ac toxin, J. Biol. Chem., 270, 17765, 10.1074/jbc.270.30.17765

Knowles, 1994, Mechanism of action of Bacillus thuringiensis insecticidal delta-endotoxins, Adv. Insect Physiol., 24, 275, 10.1016/S0065-2806(08)60085-5

Knowles, 1987, Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis delta-endotoxins with different insect specificity, Biochim. Biophys. Acta, 924, 509, 10.1016/0304-4165(87)90167-X

Loeb, 2001, Regeneration of cultured midgut cells after exposure to sublethal doses of toxin from two strains of Bacillus thuringiensis, J. Insect Physiol., 47, 599, 10.1016/S0022-1910(00)00150-5

Ma, 2005, Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant, Helicoverpa armigera larvae?, Insect Biochem. Mol. Biol., 35, 729, 10.1016/j.ibmb.2005.02.011

Marroquin, 2000, Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans, Genetics, 155, 1693, 10.1093/genetics/155.4.1693

McGaughey, 1985, Insect resistance to the biological insecticide Bacillus thuringiensis, Science, 229, 193, 10.1126/science.229.4709.193

Milne, 1998, Spruce budworm elastase precipitates Bacillus thuringiensis delta-endotoxin by specifically recognizing the C-terminal region, Insect Biochem. Mol. Biol., 28, 1013, 10.1016/S0965-1748(98)00090-3

Moar, 1995, Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), Appl. Environ. Microbiol., 61, 2086, 10.1128/AEM.61.6.2086-2092.1995

Morin, 2003, Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm, Proc. Natl. Acad. Sci. USA, 100, 5004, 10.1073/pnas.0831036100

Nagamatsu, 1999, The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CryIAa toxin, FEBS Lett., 460, 385, 10.1016/S0014-5793(99)01327-7

Oppert, 1999, Protease interactions with Bacillus thuringiensis insecticidal toxins, Arch. Insect Biochem. Physiol., 42, 1, 10.1002/(SICI)1520-6327(199909)42:1<1::AID-ARCH2>3.0.CO;2-#

Oppert, 1997, Proteinase-mediated insect resistance to Bacillus thuringiensis toxins, J. Biol. Chem., 272, 23473, 10.1074/jbc.272.38.23473

Pietrantonio, 1996, Bacillus thuringiensis toxins: action on the insect midgut, 345

Rajagopal, 2002, Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor, J. Biol. Chem., 277, 46849, 10.1074/jbc.C200523200

Rajamohan, 1998, Bacillus thuringiensis insecticidal proteins: molecular mode of action, Prog. Nucleic Acid Res. Mol. Biol., 60, 1, 10.1016/S0079-6603(08)60887-9

Sangadala, 1994, A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis Insecticidal CryIA(c) toxin binding and (Rb+-K+)-Rb-86 efflux in vitro, J. Biol. Chem., 269, 10088, 10.1016/S0021-9258(17)36993-4

Sarauer, 2003, Characterization of an intestinal mucin from the peritrophic matrix of the diamondback moth, Plutella xylostella, Insect Mol. Biol., 12, 333, 10.1046/j.1365-2583.2003.00420.x

Schnepf, 1998, Bacillus thuringiensis and its pesticidal crystal proteins, Microbiol. Mol. Biol. Rev., 62, 775, 10.1128/MMBR.62.3.775-806.1998

Shai, 2001, Molecular recognition within the membrane milieu: implications for the structure and function of membrane proteins, J. Membr Biol., 182, 91, 10.1007/s00232-001-0034-a

Shao, 1998, Processing of delta-endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors, J. Invert. Pathol., 72, 73, 10.1006/jipa.1998.4757

Shelton, 1993, Resistance of diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringiensis subspecies in the field, J. Econ. Entomol., 86, 697, 10.1093/jee/86.3.697

Tabashnik, 1990, Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), J. Econ. Entomol., 83, 1671, 10.1093/jee/83.5.1671

Tabashnik, 1998, Insect resistance to Bacillus thuringiensis: uniform or diverse?, Phil. Trans. R. Soc. Lond. Ser. B, 353, 1751, 10.1098/rstb.1998.0327

Tabashnik, 1994, Reversal of resistance to Bacillus thuringiensis in Plutella xylostella, Proc. Natl. Acad. Sci. USA, 91, 4120, 10.1073/pnas.91.10.4120

Tabashnik, 1997, Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis, Proc. Natl. Acad. Sci. USA, 94, 12780, 10.1073/pnas.94.24.12780

Tabashnik, 1997, One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins, Proc. Natl. Acad. Sci. USA, 94, 1640, 10.1073/pnas.94.5.1640

Vadlamudi, 1995, Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis, J. Biol. Chem., 270, 5490, 10.1074/jbc.270.10.5490

Valaitis, A., 1995. Bacillus thuringiensis Cry1A insecticidal toxins affect rapid release of gypsy moth midgut epithelium aminopeptidase. In: Proceedings USDA Interagency Gypsy Moth Forum, Gen. Tech. Rept. NE-213, Annapolis, MD.

van Rie, 1990, Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis, Science, 247, 72, 10.1126/science.2294593

Xie, 2005, Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins, J. Biol. Chem., 280, 8416, 10.1074/jbc.M408403200

Xu, 2005, Disruption of a cadherin gene associated with resistance to Cry1Ac delta-endotoxin of Bacillus thuringiensis in Helicoverpa armigera, Appl. Environ. Microbiol., 71, 948, 10.1128/AEM.71.2.948-954.2005

Zhang, 2006, A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis, Proc. Natl. Acad. Sci. USA, 103, 9897, 10.1073/pnas.0604017103