Sự phân bố của các nguyên tố phóng xạ tự nhiên 40K, 228Ac, và 226Ra trên lãnh thổ Romania: một nghiên cứu đo bức xạ

Springer Science and Business Media LLC - Tập 196 - Trang 1-13 - 2024
Ana-Maria Blebea-Apostu1, Romul Mircea Margineanu1,2, Diana Persa3, Delia-Georgeta Dumitras3, Mariana Claudia Gomoiu1, Octavian G. Duliu3,4
1Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Magurele, Romania
2Research Station for Viticulture and Oenology Murfatlar, Murfatlar, Romania
3Geological Institute of Romania, Bucharest, Romania
4University of Bucharest, Faculty of Physics, Department of Structure of Matter, Earth and Atmospheric Physics, Astrophysics, Magurele, Romania

Tóm tắt

Để ước tính nguy cơ bức xạ do độ phóng xạ tự nhiên của đất, 598 mẫu đất đại diện cho toàn bộ lãnh thổ Romania đã được thu thập và phân tích để xác định sự phân bố của các đồng vị phóng xạ tự nhiên 40K, 228Ac và 226Ra. Phòng thí nghiệm dưới lòng đất Slanic-Prahova có nền bức xạ cực thấp đã được sử dụng để xác định hoạt tính gamma-ray riêng biệt của các đồng vị phóng xạ này với độ không chắc chắn từ 5 đến 20%. Tất cả các dữ liệu này đã cho phép thiết lập một tập hợp bản đồ 2D minh họa sự phân bố hoạt tính riêng biệt của từng đồng vị phóng xạ cũng như tỷ lệ liều bức xạ không khí phát sinh, tất cả đều cho thấy sự phân bố không đồng nhất, với giá trị cao hơn tập trung tại khu vực tây và tây nam. Được trung bình qua 598 điểm, những xác định này dẫn đến giá trị liều hiệu quả hàng năm là 0.7 ± 0.15 mSv/năm và chỉ số nguy cơ bức xạ ngoài là 0.46 ± 0.1, cả hai đều xác nhận một môi trường an toàn về phóng xạ cho hoạt động của con người.

Từ khóa

#phóng xạ tự nhiên #đồng vị phóng xạ #40K #228Ac #226Ra #Romania #môi trường an toàn

Tài liệu tham khảo

Arevalo, R. (2018). Potassium. In M. V. White et al. (Eds.), Encyclopedia of Geochemistry. Springer. Blebea-Apostu, A. M., Margineanu, R. M., Duliu, O. G., et al. (2023). 137Cs distribution on the territory of Romania 30 years after Chernobyl accident. Environmental Monitoring and Assessment, 195, 848. https://doi.org/10.1007/s10661-023-11441-0 Beretka, J., & Matthew, P. J. (1985). Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Physics, 48, 87–95. https://doi.org/10.1097/00004032-198501000-00007 Blum, W. E. H., Schad, P., & Nortcliff, S. (2018). Essentials of soil science. Borntraeger Science Publishers. Burrough, P. A., McDonnell, R. A., & Lloyd, C. D. (2015). Principles of geographical information systems. Oxford University Press. Calin, N., Iancu A.-M., Anason, M.A. et al. (2011) Geochemistry of phosphogypsum from Turnu Magurele, Geophysical Research Abstracts, 13, EGU2011-3151,https://meetingorganizer.copernicus.org/EGU2011/EGU2011-3151.pdf Dahlkamp, F. J. (2016). Romania. In Uranium Deposits of the World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78554-5_12 Dalrymple, G. B. (2001). The age of the Earth in the twentieth century: a problem (mostly) solved. Special Publications, Geological Society of London, 190, 205–221. https://doi.org/10.1144/GSL.SP.2001.190.01.14 Els, G., & Eriksson, P. (2006). Placer formation and placer minerals. Ore Geology Reviews, 28, 373–375. https://doi.org/10.1016/j.oregeorev.2005.02.001 ESCD (2023) Europa Soil Data Center, https://esdac.jrc.ec.europa.eu/ Florea, N., & Duliu, O. G. (2013). Rehabilitation of the Barzava Uranium Mine Tailings. Journal of Hazardous, Toxic and Radioactive Waste, 17, 230–236. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000172 Hendry, J. H., Simon, S. L., Wojcik, A., et al. (2009). Human exposure to high natural background radiation: what can it teach us about radiation risks? Journal of Radiological Protection, 29, A29–A42. https://doi.org/10.1088/0952-4746/29/2A/S03 Farrance, I., & Frenkel, R. (2012). Uncertainty of measurement: A review of the rules for calculating uncertainty components through functional relationships. Clinical Biochemical Review, 33, 49–75 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387884/ (accessed 21 December 2023) Fuller, A. J., Shaw, S., Ward, M. B., et al. (2015). Caesium incorporation and retention in illite interlayers. Applied Clay Science, 108, 128–134. https://doi.org/10.1016/j.clay.2015.02.008 IAEA. (2003). Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry Data (p. 173). IAEA-TECDOC-1363; International Atomic Energy Agency https://www-pub.iaea.org/MTCD/Publications/PDF/te_1363_web.pdf (accessed 10.08.2023) Iancu, A. M., Dumitras, D. G., Marincea, S., et al. (2019). The impact on the environment of the phosphogypsum stacks in Romania, Goldschmidt Conference Abstracts. Taylor & Francis. Ion, A., Cosac, A., & Ene, V. V. (2023). Natural radioactivity in soil and radiological risk assessment in Lisava Uranium Mining Sector, Banat Mountains, Romania. Applied Sciences, 12, 12363. https://doi.org/10.3390/app122312363 Iordanova, I. I., Banov, M. D., Misheva, L. G., et al. (2015). Natural radioactivity in virgin soils and soils from some areas with closed uranium mining facilities in Bulgaria. Open Chemistry, 13, 600–605. https://doi.org/10.1515/chem-2015-0065 WRB. (2022). World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps (4th edi. ed.). International Union of Soil Sciences (IUSS) https://wrb.isric.org/files/WRB_fourth_edition_2022-12-18.pdf (accessed 10 October 2023) Khomutinin, Y., Fesenko, S., Levchuk, S., et al. (2020). Optimising sampling strategies for emergency response: Soil sampling. Journal of Environmental Radioactivity, 222, 106344. Margineanu, R. M., Simion, C. A., Bercea, S., et al. (2008). The Slanic-Prahova (ROMANIA) underground low-background radiation laboratory. Applied Radiation and Isotopes, 66, 1501–1506. https://doi.org/10.1016/j.apradiso.2008.04.002 Margineanu, R.M., Blebea-Apostu, A-M., Celarel, A. et al. (2014) Radiometric, SEM and XRD investigation of the Chituc black sands, southern Danube Delta, Romania, Journal of Environmental Radioactivity, 138, 72-79, https://doi.org/10.1016/j.jenvrad.2014.08.006 Margineanu, R. M., Ranca, A., Bolos, P., et al. (2018). Natural and artificial radionuclides distribution in soil in Murfatlar area, Dobrogea region. Romanian Journal of Physics, 63, 809 https://rjp.nipne.ro/2018_63_7-8/RomJPhys.63.809.pdf (accessed 10th August 2023) Mitrovic, B., Todorovici, D., Ajtici, J., et al. (2020). A review: Natural and artificial radionuclides and radiation hazard parameters in the soil of mountain regions in Serbia. Journal of Agricultural Sciences, 65, 1–18. https://doi.org/10.2298/JAS2001001M Nicolov, J., Forkapic, S., Hansman, J., et al. (2014). Natural radioactivity around former uranium mine, Gabrovnica in Eastern Serbia. Journal of Radioanalytical and Nuclear Chemistry, 302, 477–482. https://doi.org/10.1007/s10967-014-3203-1 NEA. (2002). The release, dispersion, deposition and behaviour of radionuclides. In H. Métivie (Ed.), Chernobyl. Assessment of Radiologicaland Health Impacts. OECD Nuclear Energy Agency, OECD Publications https://www.oecd-nea.org/upload/docs/application/pdf/2022-01/3508-chernobyl_2022-01-05_11-11-9_843.pdf (accessed 10.0802023) Panagos, P., Van Liedekerke, M., Jones, A., et al. (2012). European soil data centre: Response to European policy support and public data requirements. Land Use Policy, 29, 329–338. https://doi.org/10.1016/j.landusepol.2011.07.003 Panagos, P., Van Liedekerke, M., Borrelli, P., et al. (2022). European soil data centre 2.0: Soil data knowledge in support of the EU policies. European Journal of Soil Science, 73, e13315. https://doi.org/10.1111/ejss.13315 Papic, M., Vuković, M., Bikit, I., et al. (2014). Multi-criteria analysis of soil radioactivity in Čačak basin, Serbia. Romanian Journal of Physics, 59, 846–861. Papp, Z. (2010). Natural radioactivity in the soils of some eastern counties of Hungary. Radiation Protection Dosimetry, 141, 56–63. https://doi.org/10.1093/rpd/ncq150 Petrescu, L., Bilal, E., & Iatan, L. E. (2011). The impact of a uranium mining site on the stream sediments (Crucea mine, Romania). Scientific Annals of the School of Geology, 100, 121–126 https://hal.science/hal-00557691 Rudnick, R. L., & Gao, S. (2004). Composition of the continental crust. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry (p. 63). Elsevier-Pergamon. Sandu, I., Pescaru, V. I., & Poiana, I. (2008). Romania’s Climate. Romanian Academy Press (In Romanian). Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 ACM National Conference (pp. 517–524). https://doi.org/10.1145/800186.810616 Stojanovska, Z., Boev, B., Bosew, P., et al. (2019). Analysis of specific radionuclide activity variations in soil within geotectonic units of Republic of North Macedonia. Nuclear Technology & Radiation Protection, 34, 85–92 https://doiserbia.nb.rs/img/doi/1451-3994/2019/1451-39941800017S.pdf (accessed 10.08.2023) Tye, A. M., Milodowski, A. E., & Smedley, P. L. (2017). Distribution of natural radioactivity in the environment. In British Geological Survey Open Report. OR/17/01 British Geological Survey https://pubs.bgs.ac.uk/publications.html?pubID=OR17001 (accessed15.09.2023) Tugulan, L. C., & Duliu, O. G. (2014). Annual dose rate determination by high resolution gamma spectrometry for TL dating of loess deposits in South-eastern Dobrudjea, Romania. Romanian Reports in Physics, 66, 862–876 https://rrp.nipne.ro/2014_66_3/A25.pdf (accessed 01.08.2023) UNSCEAR. (1993). United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). In Exposure from natural sources of radiation https://www.un-ilibrary.org/content/books/9789210582452/read (accessed 01.08.2023) UNSCEAR. (2000). United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). In Effects and risks of ionizing radiations https://www.un-ilibrary.org/content/books/9789210582490/read (accessed 01.08.2023)