The development of a powerful Mongolian cyclone on 14–15 March 2021: Eddy energy analysis

Atmospheric and Oceanic Science Letters - Tập 15 - Trang 100259 - 2022
Cholaw Bueh1, Anran Zhuge1, Zuowei Xie1, Mei Yong2,3, Gomboluudev Purevjav4
1International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
2College of Geographical Science, Inner Mongolia Normal University, Hohhot, China
3Inner Mongolia Key Laboratory of Remote Sensing & Geography Information System, Inner Mongolia Normal University, Hohhot, China
4Information and Research Institute of Meteorology, Hydrology and Environment, National Agency for Meteorology and Environmental Monitoring, Juulchinhy gudamj-5, Ulaanbaatar, Mongolia

Tài liệu tham khảo

Bao, 2021, Variations in frequency and intensity of dust events crossing the Mongolia–China border, Sci. Online Lett. Atmos., 17, 145 Bueh, 2022, On the two successive supercold waves straddling the end of 2020 and the beginning of 2021, Adv. Atmos. Sci., 39, 591, 10.1007/s00376-021-1107-x Chang, 1993, On the dynamics of a storm track, J. Atmo. Sci., 50, 999, 10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2 Charney, 1947, The dynamics of long waves in a baroclinic westerly current, J. Meteorol., 4, 223, 10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2 Duan, 2021, Cause analysis on severe dust storm in northern China on 15 March 2021, J. Arid Meteorol., 39, 541 Eady, 1949, Long waves and cyclone waves, Tellus, 1, 33, 10.3402/tellusa.v1i3.8507 Hersbach, 2020, The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999, 10.1002/qj.3803 Hoskins, 1985, On the use and significance of isentropic potential vorticity maps, Q. J. R. Meteorol. Soc., 111, 877, 10.1002/qj.49711147002 Huang, 2016, Mongolian cyclones that influence the northern part of China in spring and their associated low-frequency background circulations, Chin. J. Atmos. Sci., 40, 489 Kurosaki, 2005, Regional difference in the characteristic of dust event in East Asia: relationship among dust outbreak, surface wind, and land surface condition, J. Meteorol. Soc. Jpn., 83A, 1, 10.2151/jmsj.83A.1 Liu, 2003, A case study of a severe dust storm resulted from a explosive Mongolia cyclone, Clim. Environ. Res., 8, 218 Martin, 2006, 1 Nakamura, 1992, Midwinter suppression of baroclinic wave activity in the Pacific, J. Atmos. Sci., 49, 1629, 10.1175/1520-0469(1992)049<1629:MSOBWA>2.0.CO;2 Orlanski, 1994, Orographic modification of cyclone development, J. Atmos. Sci., 51, 589, 10.1175/1520-0469(1994)051<0589:OMOCD>2.0.CO;2 Orlanski, 1991, The life cycle of a cyclone wave in the Southern Hemisphere. Part I: Eddy energy budget, J. Atmos. Sci., 48, 1972, 10.1175/1520-0469(1991)048<1972:TLCOAC>2.0.CO;2 Palmen, 1969, 1 Pettersen, 1971, On the development of extratropical storms, Q. J. R. Meteorol. Soc., 97, 457, 10.1002/qj.49709741407 Tao, 2014, Overview of advances in synoptic meteorology: Four stages of development in conceptual models of frontal cyclones, J. Meteorol. Res., 28, 849, 10.1007/s13351-014-3297-y Yin, 2022, Why super sandstorm 2021 in North China?, Natl. Sci. Rev., 9, nwab165, 10.1093/nsr/nwab165 Yun, 2013, A comparative analysis on the typical cases of the cold front and mongolia cyclone dust storms, J. Desert Res., 33, 1848