The development of a new thermal modeling and heat transfer mechanisms of a compound parabolic concentrator (CPC) based on nanofluids
Tóm tắt
Từ khóa
Tài liệu tham khảo
Badiei Z, Eslami M, Jafarpur K. Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: a CFD modeling. Energy. 2020;192:116719. https://doi.org/10.1016/j.energy.2019.116719.
Chekifi T, Boukra M. Thermal efficiency enhancement of parabolic trough collectors: a review. J Therm Anal Calorim. 2022;147:10923–42. https://doi.org/10.1007/s10973-022-11369-6.
Naserabad SN, Rafee R, Saedodin S, Ahmadi P. Multi-objective optimization of a building integrated energy system and assessing the effectiveness of supportive energy policies in Iran. Sustain Energy Technol Assess. 2021;47:101343. https://doi.org/10.1016/j.seta.2021.101343.
Hajabdollahi H, Dehaj MS, Aien M. Thermal and economic modeling and optimization of solar-assisted underfloor heating system considering hourly analysis. J Therm Anal Calorim. 2022;147:2079–12092. https://doi.org/10.1007/s10973-022-11417-1.
Sundar LS, Misganaw A, Singh MK, Sousa AC, Ali HM. Efficiency analysis of thermosyphon solar flat plate collector with low mass concentrations of ND–Co3O4 hybrid nanofuids: an experimental study. J Therm Anal Calorim. 2020;143:1–14. https://doi.org/10.1007/s10973-020-10176-1.
Rabaia MKH, Abdelkareem MA, Sayed ET, Elsaid K, Chae KJ, Wilberforce T, Olabi AG. Environmental impacts of solar energy systems: a review. Sci Total Environ. 2021;754:141989. https://doi.org/10.1016/j.scitotenv.2020.141989.
Winston R, Hinterberger H. Principles of cylindrical concentrators for solar energy, Argonne national laboratory: Lemont, IL, USA. 1974. https://doi.org/10.1016/0038-092X(75)90007-9
Francesconi M, Antonelli M. A CFD analysis to investigate thermal losses in a panel composed of several CPC concentrators. Therm Sci Eng Prog. 2018;5:278–88. https://doi.org/10.1016/j.tsep.2017.12.005.
Pranesh V, Velraj R, Christopher S, Kumaresan V. A 50 year review of basic and applied research in compound parabolic concentrating solar thermal collector for domestic and industrial applications. Sol Energy. 2019;187:293–340. https://doi.org/10.1016/j.solener.2019.04.056.
Shati AKA, Blakey SG, Beck SBM. An empirical solution to turbulent natural convection and radiation heat transfer in square and rectangular enclosures. Appl Therm Eng. 2013;51:364–70. https://doi.org/10.1016/j.applthermaleng.2012.09.022.
Bairi A, Zarco-Pernia E, María GM. A review on natural convection in enclosures for engineering applications. The particular case of the parallelogrammic diode cavity. Appl Therm Eng. 2014;63:304–22. https://doi.org/10.1016/j.applthermaleng.2013.10.065.
Hsieh CK. Thermal analysis of CPC collectors. Sol Energy. 1981;27:19–29. https://doi.org/10.1016/0038-092X(81)90016-5.
Tchinda R, Kaptouom E, Njomo D. Study of the CPC collector thermal behavior. Energy Convers Manage. 1998;39:1395–406. https://doi.org/10.1016/S0196-8904(97)10052-8.
Tchinda R. Thermal behavior of solar air heater with compound parabolic concentrator. Energy Convers Manage. 2008;49:529–40. https://doi.org/10.1016/S0196-8904(97)10052-8.
Singh H, Eames PC. A review of natural convective heat transfer correlations in rectangular cross-section cavities and their potential applications to compound parabolic concentrating (CPC) solar collector cavities. Appl Therm Eng. 2011;31:2186–96. https://doi.org/10.1016/j.applthermaleng.2011.05.032.
Benoit L, Spreafico D, Gauthier G, Flamant G. Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: properties and heat transfer coefficients. Renew Sustain Energy Rev. 2016;55:298–315. https://doi.org/10.1016/j.rser.2015.10.059.
Antonelli M, Francesconi M, Marco PD, Desideri U. Analysis of heat transfer in different CPC solar collectors: a CFD approach. Appl Therm Eng. 2016;101:479–89. https://doi.org/10.1016/j.applthermaleng.2015.12.033.
Bairi A. On the Nusselt number definition adapted to natural convection in parallelogrammic cavities. Appl Therm Eng. 2008;28:1267–71. https://doi.org/10.1016/j.applthermaleng.2007.10.025.
Velusamy K, Sundararajan T, Seetharamu KN. Interaction effects between radiative surface radiation and turbulent natural convection in square and rectangular enclosures. J Heat Transfer. 2001;123:1062–70. https://doi.org/10.1115/1.1409259.
Altac Z, Kurtul O. Natural convection in tilted rectangular enclosures with a vertically situated hot plate inside. Appl Therm Eng. 2007;27:1832–40. https://doi.org/10.1016/j.applthermaleng.2007.01.006.
Anis M, Hamdi M, Hazami M, Guizani AA. Analysis of an integrated collector storage system with vacuum glazing and compound parabolic concentrator. Appl Therm Eng. 2020;169:114958. https://doi.org/10.1016/j.applthermaleng.2020.114958.
Jaji V, Manjunath K. A parametric study of a concentrating integral storage solar water heater for domestic uses. Appl Therm Eng. 2017;111:734–44. https://doi.org/10.1016/j.applthermaleng.2016.09.127.
Lara F, Cerezo J, Acuna A, Gonzalez-Angeles A, Velazquez N, Ruelas A, López-Zavala R. Design, optimization and comparative study of a solar CPC with a fully illuminated tubular receiver and a fin inverted V-shaped receiver. Appl Therm Eng. 2021;184:116141. https://doi.org/10.1016/j.applthermaleng.2020.116141.
Reddy K, Anandhi KS, Mallick TK. Numerical modeling of heat losses in a line focusing solar compound parabolic concentrator with planar absorber. Appl Therm Eng. 2020;181:115938. https://doi.org/10.1016/j.applthermaleng.2020.115938.
Chekifi T, Boukraa M. Thermal efficiency enhancement of parabolic trough collectors: a review. J Therm Anal Calorim. 2022;147:10923–42. https://doi.org/10.1007/s10973-022-11369-6.
Rashidi S, Mahian O, Languri E. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2017;131:2027–39. https://doi.org/10.1007/s10973-017-6773-7.
Esfe MH, Saedodin S, Biglari M, Rostamian SH. An experimental study on thermophysical properties and heat transfer characteristics of low volume concentrations of Ag-water nanofluid. Int Commun Heat Mass Transfer. 2016;74:91–7. https://doi.org/10.1016/j.icheatmasstransfer.2016.03.004.
Kumar LH, Kazi SN, Masjuki HH, Zubir MNM, Jahan A, Sean OC. Experimental study on the effect of bio-functionalized graphene nanoplatelets on the thermal performance of liquid flat plate solar collector. J Therm Anal Calorim. 2022;147:1657–74. https://doi.org/10.1007/s10973-020-10527-y.
Nazir MS, Ghasemi A, Dezfulizadeh A, Abdalla AN. Numerical simulation of the performance of a novel parabolic solar receiver filled with nanofluid. J Therm Anal Calorim. 2021;144:2653–64. https://doi.org/10.1007/s10973-021-10613-9.
Rashidi S, Hormozi F, Karimi N, Ahmed W. Applications of nanofluids in thermal energy transport. Emerg Nanotechnol Renew Energy. 2021. https://doi.org/10.1016/B978-0-12-821346-9.00018-3.
Khaledi O, Sadodin S, Rostamian SH. Optimization of the nonlinear model of neural network training in predicting thermal efficiency of solar concentrator with simulated annealing algorithm. Int J Nonlinear Anal Appl. 2022;302:1–14. https://doi.org/10.22075/IJNAA.2021.22254.2341.
Bellos E, Tzivanidis C. A review of concentrating solar thermal collectors with and without nanofluids. J Therm Anal Calorim. 2019;135:763–86. https://doi.org/10.1007/s10973-018-7183-1.
Khanafer K, Vafai K. A review on the applications of nanofluids in solar energy field. Renew Energy. 2018;123:398–406. https://doi.org/10.1016/j.renene.2018.01.097.
Bellos E, Tzivanidis C. Parametric investigation of nanofluids utilization in parabolic trough collectors. Therm Sci Engi Prog. 2017;2:71–9. https://doi.org/10.1016/j.tsep.2017.05.001.
Bellos E, Said Z, Tzivanidis C. The use of nanofluids in solar concentrating technologies: a comprehensive review. J Clean Prod. 2018;196:84–99. https://doi.org/10.1016/j.jclepro.2018.06.048.
Khaledi O, Saedodin S, Rostamian SH. Energy, hydraulic and exergy analysis of a compound parabolic concentrator using hybrid nanofluid: An experimental study. Int Commun Heat Mass Transf. 2022;136:106181. https://doi.org/10.1016/j.icheatmasstransfer.2022.106181.
Liu ZH, Hu RL, Lu L, Zhao F, Xiao HS. Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector. Energy Convers Manag. 2013;73:135–43. https://doi.org/10.1016/j.enconman.2013.04.010.
Korres D, Bellos E, Tzivanidis C. Investigation of a nanofluid-based compound parabolic trough solar collector under laminar flow conditions. Appl Therm Eng. 2019;149:366–76. https://doi.org/10.1016/j.applthermaleng.2018.12.077.
Javaniyan H, Saedodin S, Zamzamian A, Eshagh M, Wongwises S. Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study. Renew Energy. 2017;114:1407–18. https://doi.org/10.1016/j.renene.2017.07.008.
Salavati S, Kianifar A, Niazmand H, Mahian O, Wongwises S. Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2 /EG-Water nanofluids. Int Commun Heat Mass Transfer. 2015;65:71–5. https://doi.org/10.1016/j.icheatmasstransfer.2015.02.011.
ASHRAE standard methods of testing to determine the thermal performance of solar collectors- Catalog- UW-Madison Libraries, n. d.
Rabl A, O’Gallagher J, Winston R. Design and test of non-evacuated solar collectors with compound parabolic concentrators. Sol Energy. 1980;25:335–51. https://doi.org/10.1016/0038-092X(80)90346-1.
Sieder EN, Tate GE. Heat transfer and pressure drop of liquids in tubes. Ind Eng Chem. 1936;28:1429. https://doi.org/10.1021/ie50324a027.
Esfe MH, Saedodin S, Toghraie D. Experimental study and modeling the SiO2-MWCNT (30: 70)/SAE40 hybrid nano-lubricant flow based on the response surface method to identify the optimal lubrication conditions. Int Commun Heat Mass Transfer. 2022;130:105771. https://doi.org/10.1016/j.icheatmasstransfer.2021.105771.
Mohebbi R, Mehryan SAM, Izadi M, Mahian O. Natural convection of hybrid nanofluids inside a partitioned porous cavity for application in solar power plants. J Therm Anal Calorim. 2019;137:1719–33. https://doi.org/10.1007/s10973-019-08019-9.
Sarasar MB, Saedodin S, Rostamian SH, Doostmohammadi M, Khaledi O. The effect of vortex generator insert and TiO2/water nanofluid on thermal efficiency and heat transfer of flat plate solar collector. Sustain Energy Technol Assess. 2022;53:102617. https://doi.org/10.1016/j.seta.2022.102617.
Alizadeh R, Mesgarpour M, Ameri A, Abad JMN, Wongwises S. Artificial intelligence prediction of natural convection of heat in an oscillating cavity filled by CuO nanofluid. J Taiwan Inst Chem Eng. 2021;124:75–90. https://doi.org/10.1016/j.jtice.2021.04.067.
Rostamian SH, Saedodin S, Asgari SA, Salarian AH. Effect of C60-SiO2 hybrid nanoparticles on thermophysical and tribological properties of a multigrade engine oil: an experimental study. J Therm Anal Calorim. 2020;147:1–13. https://doi.org/10.1007/s10973-020-10323-8.
Gelis K, Celik AN, Ozbek K, Ozyurt O. Experimental investigation into efficiency of SiO2/water-based nanofluids in photovoltaic thermal systems using response surface methodology. Sol Energy. 2022;235:229–41. https://doi.org/10.1016/j.solener.2022.02.021.
Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res. 2003;5:167. https://doi.org/10.1023/A:1024438603801.
Sharafeldin MA, Grof G. Experimental investigation of flat plate solar collector using CeO2-water nanofluid. Energy Convers Manage. 2018;155:32–41. https://doi.org/10.1016/j.enconman.2017.10.070.
Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83:97–117. https://doi.org/10.1017/S0022112077001062.
Bejan A. Convection Heat Transfer. 3rd ed. Canada: John Wiley & Sons Inc; 2004.
Mashhadian A, Heyhat MM, Mahian O. Improving environmental performance of a direct absorption parabolic trough collector by using hybrid nanofluids. Energy Convers Manage. 2021;244:114450. https://doi.org/10.1016/j.enconman.2021.114450.
Alsabery AI, Mohebbi R, Chamkha AJ, Hashim I. Impacts of magnetic field and non-homogeneous nanofluid model on convective heat transfer and entropy generation in a cavity with heated trapezoidal body. J Therm Anal Calorim. 2019;138:1371–94. https://doi.org/10.1007/s10973-019-08249-x.
Saedodin S, Zaboli M, Rostamian SH, Kharabati S. Statistical analysis and shape optimization of a finned corrugated heat exchanger using RSM. Chem Eng Commun. 2021. https://doi.org/10.1080/00986445.2021.1978077.
Khaledi O, Saedodin S, Rostamian SH. Experimental investigation of thermal efficiency and thermal performance improvement of compound parabolic collector utilizing SiO2/ethylene glycol–water nanofluid. Environ Sci Pollut Res. 2022. https://doi.org/10.1007/s11356-022-22848-6.
Li X, Dai YJ, Li Y, Wang RZ. Comparative study on two novel intermediate temperature CPC solar collectors with the U-shape evacuated tubular absorber. Sol Energy. 2013;93:220–34. https://doi.org/10.1016/j.solener.2013.04.002.
Incropera FP, et al. Fundamentals of heat and mass transfer. John Wiley & Sons; 2011.
Dudley VE. Test results: SEGS LS-2 solar collector, Sandia National Labs., lbuquerque, NM (United States). 1994.
Churchill S, Chu H. Correlating equations for laminar and turbulent free convection from a horizontal cylinder. Int J Heat Mass Tran. 1975;18(9):1049–53. https://doi.org/10.1016/0017-9310(75)90243-4.
Zukauskas A. Heat transfer from tubes in crossflow. Adv Heat Tran. 1972;8:93–160. https://doi.org/10.1016/S0065-2717(08)70038-8.
Cairo AE, Clark JA. A thermal-optical analysis of a compound parabolic concentrator for single and multiphase flows including superheat. Wärmeund Stoffübertragung. 1981;21:189–98.
Prasad AK, Koseff JR. Combined forced and natural convection heat transfer in a deep lid-driven cavity flow. Int J Heat Fluid Flow. 1996;17(5):460–7. https://doi.org/10.1016/0142-727X(96)00054-9.