The design and analysis of the Generalized Finite Element Method

Computer Methods in Applied Mechanics and Engineering - Tập 181 Số 1-3 - Trang 43-69 - 2000
T. Strouboulis1, Ivo M Babuska2, Kevin D. Copps1
1Texas A and M University
2Aerospace Engineering and Engineering Mechanics

Tóm tắt

Từ khóa


Tài liệu tham khảo

Belytschko, 1994, Element-free galerkin methods, Int. J. Numer. Meth. Engrg., 37, 229, 10.1002/nme.1620370205

Belytschko, 1996, Meshless methods: An overview and recent developments, Comp. Meth. Appl. Mech. Engrg., 139, 3, 10.1016/S0045-7825(96)01078-X

Duarte, 1996, hp clouds — An hp meshless method, Numer. Meth. for Partial Diff. Eqns., 12, 673, 10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P

J.T. Oden, C.A.M. Duarte, Solution of singular problems using hp clouds, in: J.R. Whiteman (Ed.), The Mathematics of Finite Elements and Applications, Wiley, Newyork, 1997, pp. 35–54

Liu, 1995, Reproducing kernel particle methods for structural dynamics, Int. J. Numer. Meth. Engrg., 38, 1655, 10.1002/nme.1620381005

Babuška, 1997, The partition of unity method, Int. J. Numer. Meth. Engrg., 40, 727, 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N

Krongauz, 1996, Enforcement of essential boundary conditions in meshless approximations using finite elements, Comput. Meth. Appl. Mech. Engrg., 131, 133, 10.1016/0045-7825(95)00954-X

Babuška, 1994, Special finite element methods in a class of second order elliptic problems with rough coefficients, SIAM Num. Anal., 31, 945, 10.1137/0731051

Jirousek, 1996, T-elements: State of the art and future trends, Arch. Comput. Meth. Engrg. State of Art Rev., 3, 289

V. Apanovitch, The method of external finite element approximation, Minsk, 1991 ISBN 5-339-00597-6

J.M. Melenk, Finite element methods with harmonic shape functions for solving Laplace's equation, M.A. Thesis, University of Maryland, College Park, MD, 1992

J.M. Melenk, On generalized finite element methods, Ph.D. Dissertation, University of Maryland, College Park, 1995 (Advisor: I. Babuška)

Babuška, 1996, The partition of unity finite element method: Basic theory and applications, Comp. Meth. Appl. Mech. Engrg., 139, 289, 10.1016/S0045-7825(96)01087-0

Melenk, 1997, Approximation with harmonic and generalized harmonic polynomials in the partition of unity method, Comput. Assist. Mech. Engrg. Sci., 4, 607

Oden, 1998, A new cloud based hp finite element method, Comp. Meth. Appl. Mech. Engrg., 153, 117, 10.1016/S0045-7825(97)00039-X

R.E. Bank, A.H. Sherman, A. Weiser, Refinement algorithms and data structures for regular local mesh refinement, in: R. Stepleman et al. (Ed.), Scientific Computing, IMACS/North-Holland, Amsterdam, 1983, pp. 3–17

Babuška, 1987, A feedback finite element method with a-posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator, Comput. Meth. Appl. Mech. Engrg., 61, 1, 10.1016/0045-7825(87)90114-9

Oden, 1989, Toward a universal h-p adaptive finite element strategy: Part 2. A posteriori error estimation, Comput. Meth. Appl. Mech. Engrg., 77, 113, 10.1016/0045-7825(89)90130-8

B.A. Szabo, I. Babuška, Finite Element Analysis, Wiley, New York, 1991, pp.169–173

Duff, 1983, The multifrontal solution of indefinite sparse symmetric linear systems, ACM Trans. Math. Softw., 9, 302, 10.1145/356044.356047

I.S. Duff, J.K. Reid, MA47 – A Fortran code for direct solution of indefinite sparse symmetric linear systems, Report RAL-95-001, Rutherford Appleton Laboratory, Oxfordshire, 1995

I.S. Duff, J.K. Reid, MA27 – A set of FORTRAN subroutines for solving sparse symmetric sets of linear equations, AERE R10533, HMSO, London, 1982

J.N. Lyness, On handling singularities in finite elements, in: T.O. Espelid, A. Genz (Eds.), Numerical Integration, Recent Developments, Software and Applications, NATO ASI Series C. Math. Phys. Sci., vol. 357, Klewer Academic Publishers, The Netherlands, 1992

Espelid, 1994, On integrating vertex singularities using extrapolation, BIT, 34, 62, 10.1007/BF01935016

Espelid, 1994, DECUHR: An algorithm for automatic integration of singular functions over a hyperrectangular region, Numer. Alg., 8, 201, 10.1007/BF02142691

Berntson, 1991, An adaptive algorithm for the approximate calculation of multiple integrals, ACM Trans. Math. Softw., 17, 437, 10.1145/210232.210233

G. Booch, Object Oriented Design with Applications, Benjamin/Cummings, New York, 1991, p. 100