The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells

Journal of Experimental Medicine - Tập 204 Số 13 - Trang 3119-3131 - 2007
Lionel Franz Poulin1,2,3, Sandrine Henri1,2,3, Béatrice de Bovis1,2,3, Élisabeth Devilard1,2,3, Adrien Kissenpfennig1,2,3, Bernard Malissen1,2,3
11Centre d'Immunologie de Marseille-Luminy, Université de la Méditerrannée, Case 906, 13288 Marseille Cedex 9, France
22Institut National de la Santé et de la Recherche Médicale, U631, 13288 Marseille Cedex 9, France
33Centre National de la Recherche Scientifique, UMR6102, 13288 Marseille Cedex 9, France

Tóm tắt

Langerhans cells (LCs) constitute a subset of dendritic cells (DCs) that express the lectin langerin and that reside in their immature state in epidermis. Paradoxically, in mice permitting diphtheria toxin (DT)–mediated ablation of LCs, epidermal LCs reappeared with kinetics that lagged behind that of their putative progeny found in lymph nodes (LNs). Using bone marrow (BM) chimeras, we showed that a major fraction of the langerin+, skin-derived DCs found in LNs originates from a developmental pathway that is independent from that of epidermal LCs. This pathway, the existence of which was unexpected, originates in the dermis and gives rise to langerin+ dermal DCs (DDCs) that should not be confused with epidermal LCs en route to LNs. It explains that after DT treatment, some langerin+, skin-derived DCs reappear in LNs long before LC-derived DCs. Using CD45 expression and BrdU-labeling kinetics, both LCs and langerin+ DDCs were found to coexist in wild-type mice. Moreover, DT-mediated ablation of epidermal LCs opened otherwise filled niches and permitted repopulation of adult noninflammatory epidermis with BM-derived LCs. Our results stress that the langerin+ DC network is more complex than originally thought and have implications for the development of transcutaneous vaccines and the improvement of humanized mouse models.

Từ khóa


Tài liệu tham khảo

2002, Proc. Natl. Acad. Sci. USA., 99, 351, 10.1073/pnas.231606698

2007, Nat. Rev. Immunol., 7, 543, 10.1038/nri2103

2005, J. Invest. Dermatol., 124, 1, 10.1111/j.1523-1747.2004.23554.x

2004, Trends Immunol., 25, 655, 10.1016/j.it.2004.09.013

2007, Nat. Rev. Immunol., 7, 19, 10.1038/nri1996

2007, Immunity., 26, 741, 10.1016/j.immuni.2007.06.006

2000, Immunity., 12, 71, 10.1016/S1074-7613(00)80160-0

2005, Mol. Cell. Biol., 25, 88, 10.1128/MCB.25.1.88-99.2005

2005, Immunity., 22, 643, 10.1016/j.immuni.2005.04.004

2003, J. Invest. Dermatol., 120, 266, 10.1046/j.1523-1747.2003.12042.x

2004, J. Invest. Dermatol., 122, 670, 10.1111/j.0022-202X.2004.22337.x

2002, Nat. Immunol., 3, 1135, 10.1038/ni852

2006, J. Exp. Med., 203, 2627, 10.1084/jem.20060667

2004, Nat. Immunol., 5, 1124, 10.1038/ni1130

2005, Immunity., 22, 439, 10.1016/j.immuni.2005.02.007

2006, Nat. Immunol., 7, 663, 10.1038/ni1340

2007, Nat. Immunol., 8, 578, 10.1038/ni1462

2005, J. Cell Biol., 169, 569, 10.1083/jcb.200501071

2002, Immunity., 17, 211, 10.1016/S1074-7613(02)00365-5

2001, J. Immunol., 167, 741, 10.4049/jimmunol.167.2.741

2002, Blood., 100, 1734, 10.1182/blood.V100.5.1734.h81702001734_1734_1741

2006, Nat. Immunol., 7, 265

2005, J. Invest. Dermatol., 125, 983, 10.1111/j.0022-202X.2005.23951.x

2007, Cell., 128, 445, 10.1016/j.cell.2007.01.014

2001, J. Exp. Med., 194, 1361, 10.1084/jem.194.9.1361

2007, J. Exp. Med., 204, 3133, 10.1084/jem.20071733

2005, Immunity., 23, 611, 10.1016/j.immuni.2005.10.008

2003, Science., 301, 1925, 10.1126/science.1087576

2007, Nat. Med., 13, 367, 10.1038/nm1541

2007, Immunity., 26, 257, 10.1016/j.immuni.2007.01.007

2007, Immunity., 26, 537, 10.1016/j.immuni.2007.05.001

2000, J. Immunol., 164, 2978, 10.4049/jimmunol.164.6.2978