The deep continental subsurface: the dark biosphere
Tóm tắt
Từ khóa
Tài liệu tham khảo
Amend JP, Rogers KL, Shock EL, Gurrieri S, Inguaggiato S (2003) Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy. Geobiology 1:37–58. https://doi.org/10.1046/j.1472-4669.2003.00006.x
Amend JP, Teske A (2005) Expanding frontiers in deep subsurface microbiology. Palaeogeogr Palaeoclimatol Palaeoecol 219:131–155. https://doi.org/10.1016/j.palaeo.2004.10.018
Apps JA, van de Kamp PC (1993) Energy gases of abiogenic origin in the Earth’s crust. US Geol Surv Prof Paper 1570:81–132
Basso O, Lascourreges J-F, Le Borgne F, Le Goff C, Magot M (2009) Characterization by culture and molecular analysis of the microbial diversity of a deep subsurface gas storage aquifer. Res Microbiol 160:107–116. https://doi.org/10.1016/j.resmic.2008.10.010
Bastin ES, Greer FE, Merritt C, Moulton G (1926) The presence of sulphate reducing bacteria in oil field waters. Science 63:21–24 www.jstor.org/stable/1649067
Bomberg M, Nyyssönen M, Nousiainen A, Hultman J, Paulin L, Auvinen P, Itävaara M (2014) Evaluation of molecular techniques in characterization of deep terrestrial biosphere. Open Journal of Ecology 4:468–487. https://doi.org/10.4236/oje.2014.48040
Borgonie G, García-Moyano A, Litthauer D, Bert W, Bester A, van Heerden E, Möller C, Erasmus M, Onstott T (2011) Nematoda from the terrestrial deep subsurface of South Africa. Nature 474:79–82. https://doi.org/10.1038/nature09974
Brazelton WJ, Nelson B, Schrenk MO (2012) Metagenomic evidence for H2 oxidation and H2 production by serpentinite-hosted subsurface microbial communities. Front Microbiol 2(268). https://doi.org/10.3389/fmicb.2011.00268
Breuker A, Köweker G, Blazejak A, Schippers A (2011) The deep biosphere in terrestrial sediments in the Chesapeake Bay area, Virginia, USA. Front Microbiol 2. https://doi.org/10.3389/fmicb.2011.00156
Cockell CS, Voytek MA, Gronstal AL, Finster K, Kirshtein JD, Howard K, Reitner J, Gohn GS, Sanford WE, Horton Jr JW (2012) Impact disruption and recovery of the deep subsurface biosphere. Astrobiology 12:231–246. https://doi.org/10.1089/ast.2011.0722
Corliss JB, Dymond J, Gordon LI, Edmond JM, von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K (1979) Submarine thermal springs on the Galapagos Rift. Science 203:1073–1083. https://doi.org/10.1126/science.203.4385.1073
Chapelle FH, O'neill K, Bradley PM, Methé BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315. doi:doi: https://doi.org/10.1038/415312a
Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, DeSantis TZ, Gihring TM, Lapidus A, Lin L-H, Lowry SR (2008) Environmental genomics reveals a single-species ecosystem deep within Earth. Science 322:275–278
D’Hondt S, Rutherford S, Spivack AJ (2002) Metabolic activity of subsurface life in deep-sea sediments. Science 295:2067–2070. https://doi.org/10.1126/science.1064878
Darwin C (1839) Voyages of the adventure and beagle, volume III–journal and remarks, 1832–1836. Henry Colburn, London
Dong Y, Sanford RA, Locke RA, Cann IK, Mackie RI, Fouke BW (2014) Fe-oxide grain coatings support bacterial Fe-reducing metabolisms in 1.7–2.0 km-deep subsurface quartz arenite sandstone reservoirs of the Illinois Basin (USA). Frontiers in microbiology 5 (511). doi:doi: https://doi.org/10.3389/fmicb.2014.00511
dos Santos AM, Vieira KR, Sartori RB, dos Santos AM, Queiroz MI, Zepka LQ, Jacob-Lopes E (2017) Heterotrophic cultivation of cyanobacteria: study of effect of exogenous sources of organic carbon, absolute amount of nutrients, and stirring speed on biomass and lipid productivity. Frontiers in bioengineering and biotechnology 5. https://doi.org/10.3389/fbioe.2017.00012
Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799. https://doi.org/10.1126/science.287.5459.1796
El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci 107:18127–18131. https://doi.org/10.1073/pnas.1004880107
Escudero C, Vera M, Oggerin M, Amils R (2018) Active microbial biofilms in deep poor porous continental subsurface rocks. Sci Rep 8(1):1538. https://doi.org/10.1038/s41598-018-19903-z
Eydal HS, Jägevall S, Hermansson M, Pedersen K (2009) Bacteriophage lytic to Desulfovibrio aespoeensis isolated from deep groundwater. The ISME journal 3:1139–1147. https://doi.org/10.1038/ismej.2009.66
Fernández-Remolar DC, Prieto-Ballesteros O, Rodríguez N, Gómez F, Amils R, Gómez-Elvira J, Stoker CR (2008) Underground habitats in the Río Tinto basin: a model for subsurface life habitats on Mars. Astrobiology 8:1023–1047. https://doi.org/10.1089/ast.2006.0104
Fredrickson JK, Balkwill DL (2006) Geomicrobial processes and biodiversity in the deep terrestrial subsurface. Geomicrobiol J 23:345–356. https://doi.org/10.1080/01490450600875571
Fredrickson JK, McKinley JP, Bjornstad BN, Long PE, Ringelberg DB, White DC, Krumholz LR, Suflita JM, Colwell FS, Lehman RM, Phelps TJ, Onstott TC (1997) Pore-size constraints on the activity and survival of subsurface bacteria in a late cretaceous shale-sandstone sequence, northwestern New Mexico. Geomicrobiol J 14:183–202. https://doi.org/10.1080/01490459709378043
Fry NK, Fredrickson JK, Fishbain S, Wagner M, Stahl DA (1997) Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers. Appl Environ Microbiol 63:1498–1504
Ghiorse WC, Wilson JT (1988) Microbial ecology of the terrestrial subsurface. Adv Appl Microbiol 33:107–172. https://doi.org/10.1016/S0065-2164(08)70206-5
Gihring T, Moser D, Lin L-H, Davidson M, Onstott T, Morgan L, Milleson M, Kieft T, Trimarco E, Balkwill D (2006) The distribution of microbial taxa in the subsurface water of the Kalahari Shield, South Africa. Geomicrobiol J 23:415–430. https://doi.org/10.1080/01490450600875696
Gold T (1992) The deep, hot biosphere. Proc Natl Acad Sci 89:6045–6049. https://doi.org/10.1073/pnas.89.13.6045
Gronstal AL, Voytek MA, Kirshtein JD, Nicole M, Lowit MD, Cockell CS (2009) Contamination assessment in microbiological sampling of the Eyreville core, Chesapeake Bay impact structure. Geol Soc Am Spec Pap 458:951–964. https://doi.org/10.1130/2009.2458(41)
Hoehler TM (2004) Biological energy requirements as quantitative boundary conditions for life in the subsurface. Geobiology 2:205–215. https://doi.org/10.1111/j.1472-4677.2004.00033.x
Hoshino T, Yilmaz LS, Noguera DR, Daims H, Wagner M (2008) Quantification of target molecules needed to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH. Appl Environ Microbiol 74:5068–5077. https://doi.org/10.1128/AEM.00208-08
Ino K, Hernsdorf AW, Konno U, Kouduka M, Yanagawa K, Kato S, Sunamura M, Hirota A, Togo YS, Ito K (2017) Ecological and genomic profiling of anaerobic methane-oxidizing archaea in a deep granitic environment. The ISME Journal 12:31–47. https://doi.org/10.1038/ismej.2017.140
Ino K, Konno U, Kouduka M, Hirota A, Togo YS, Fukuda A, Komatsu D, Tsunogai U, Tanabe AS, Yamamoto S (2016) Deep microbial life in high-quality granitic groundwater from geochemically and geographically distinct underground boreholes. Environ Microbiol Rep 8:285–294. https://doi.org/10.1111/1758-2229.12379
Itävaara M, Nyyssönen M, Bomberg M, Kapanen A, Nousiainen A, Ahonen L, Hultman J, Paulin L, Auvinen P, Kukkonen IT (2011a) Microbiological sampling and analysis of the Outokumpu Deep Drill Hole biosphere in 2007–2009. In: Kukkonen IT (ed) Special paper - geological survey of Finland, vol 51. Finland, pp 199–206
Itävaara M, Nyyssönen M, Kapanen A, Nousiainen A, Ahonen L, Kukkonen I (2011b) Characterization of bacterial diversity to a depth of 1500 m in the Outokumpu deep borehole, Fennoscandian Shield. FEMS Microbiol Ecol 77:295–309. https://doi.org/10.1111/j.1574-6941.2011.01111.x.
Iwatsuki T, Hagiwara H, Ohmori K, Munemoto T, Onoe H (2015) Hydrochemical disturbances measured in groundwater during the construction and operation of a large-scale underground facility in deep crystalline rock in Japan. Environmental Earth Sciences 74:3041–3057. https://doi.org/10.1007/s12665-015-4337-3
Jakobsen R (2007) Redox microniches in groundwater: a model study on the geometric and kinetic conditions required for concomitant Fe oxide reduction, sulfate reduction, and methanogenesis. Water Resour Res 43(12). https://doi.org/10.1029/2006WR005663
Jannasch HW, Eimhjellen K, Farmanfarmalan A (1971) Microbial degradation of organic matter in the deep sea. Science 171:672–675. https://doi.org/10.1126/science.171.3972.672
Jones AA, Bennett PC (2017) Mineral ecology: surface specific colonization and geochemical drivers of biofilm accumulation, composition, and phylogeny. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.00491
Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci 109:16213–16216. https://doi.org/10.1073/pnas.1203849109
Kieft T (2010) Sampling the deep sub-surface using drilling and coring techniques. In: Handbook of hydrocarbon and lipid microbiology. Springer, pp 3427–3441
Kieft TL (2016) Microbiology of the deep continental biosphere. In: C. H (ed) Their world: a diversity of microbial environments, vol 1. Springer, pp 225–249. doi: https://doi.org/10.1007/978-3-319-28071-4_6
Kurakov A, Lavrent’Ev R, Nechitailo TY, Golyshin P, Zvyagintsev D (2008) Diversity of facultatively anaerobic microscopic mycelial fungi in soils. Microbiology 77:90–98. https://doi.org/10.1134/S002626170801013X
Kyle JE, Eydal HS, Ferris FG, Pedersen K (2008) Viruses in granitic groundwater from 69 to 450 m depth of the Äspö hard rock laboratory, Sweden. The ISME Journal 2:571–574. https://doi.org/10.1038/ismej.2008.18
Labonté JM, Field EK, Lau M, Chivian D, Van Heerden E, Wommack KE, Kieft TL, Onstott TC, Stepanauskas R (2015) Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.00349
Lau MC, Cameron C, Magnabosco C, Brown CT, Schilkey F, Grim S, Hendrickson S, Pullin M, Lollar BS, van Heerden E (2014) Phylogeny and phylogeography of functional genes shared among seven terrestrial subsurface metagenomes reveal N-cycling and microbial evolutionary relationships. Front Microbiol 5. https://doi.org/10.3389/fmicb.2015.00349
Lau MC, Kieft TL, Kuloyo O, Linage-Alvarez B, Van Heerden E, Lindsay MR, Magnabosco C, Wang W, Wiggins JB, Guo L (2016) An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proceedings of the National Academy of Sciences 113:E7927-E7936. doi: https://doi.org/10.1073/pnas.1612244113
Lehman RM, O'Connell SP, Banta A, Fredrickson JK, Reysenbach A-L, Kieft TL, Colwell FS (2004) Microbiological comparison of core and groundwater samples collected from a fractured basalt aquifer with that of dialysis chambers incubated in situ. Geomicrobiol J 21:169–182. https://doi.org/10.1080/01490450490275848
Lin L-H, Hall J, Onstott T, Gihring T, Lollar BS, Boice E, Pratt L, Lippmann-Pipke J, Bellamy RE (2006a) Planktonic microbial communities associated with fracture-derived groundwater in a deep gold mine of South Africa. Geomicrobiol J 23:475–497. https://doi.org/10.1080/01490450600875829
Lin L-H, Wang P-L, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM, Lollar BS, Brodie EL, Hazen TC, Andersen GL (2006b) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314:479–482. https://doi.org/10.1126/science.1127376
Magnabosco C, Ryan K, Lau MC, Kuloyo O, Lollar BS, Kieft TL, Van Heerden E, Onstott TC (2016) A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust. The ISME journal 10:730–741. https://doi.org/10.1038/ismej.2015.150
Magnabosco C, Tekere M, Lau MC, Linage B, Kuloyo O, Erasmus M, Cason E, van Heerden E, Borgonie G, Kieft TL (2014) Comparisons of the composition and biogeographic distribution of the bacterial communities occupying South African thermal springs with those inhabiting deep subsurface fracture water. Front Microbiol 5. https://doi.org/10.3389/fmicb.2014.00679
Mannan RM, Pakrasi HB (1993) Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Plant Physiol 103:971–977. https://doi.org/10.1128/AEM.71.6.3213-3227.2005
McMahon S, Parnell J (2014) Weighing the deep continental biosphere. FEMS Microbiol Ecol 87:113–120. https://doi.org/10.1111/1574-6941.12196
Momper L, Jungbluth SP, Lee MD, Amend JP (2017a) Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community. The ISME journal 11:2319–2333. https://doi.org/10.1038/ismej.2017.94
Momper L, Reese BK, Zinke L, Wanger G, Osburn MR, Moser D, Amend JP (2017b) Major phylum-level differences between porefluid and host rock bacterial communities in the terrestrial deep subsurface. Environ Microbiol Rep 9:501–511. https://doi.org/10.1111/1758-2229.12563
Moraru C, Amann R (2012) Crystal ball: fluorescence in situ hybridization in the age of super-resolution microscopy. Syst Appl Microbiol 35:549–552. https://doi.org/10.1016/j.syapm.2012.10.001
Moraru C, Lam P, Fuchs BM, Kuypers MM, Amann R (2010) GeneFISH—an in situ technique for linking gene presence and cell identity in environmental microorganisms. Environ Microbiol 12:3057–3073. https://doi.org/10.1111/j.1462-2920.2010.02281.x
Morita RY (1999) Is H2 the universal energy source for long-term survival? Microb Ecol 38:307–320. https://doi.org/10.1007/s002489901002
Moser DP, Gihring TM, Brockman FJ, Fredrickson JK, Balkwill DL, Dollhopf ME, Lollar BS, Pratt LM, Boice E, Southam G (2005) Desulfotomaculum and Methanobacterium spp. dominate a 4- to 5-kilometer-deep fault. Appl Environ Microbiol 71:8773–8783. https://doi.org/10.1128/AEM.71.12.8773-8783.2005
Moser DP, Onstott T, Fredrickson JK, Brockman FJ, Balkwill DL, Drake G, Pfiffner S, White D, Takai K, Pratt L (2003) Temporal shifts in the geochemistry and microbial community structure of an ultradeep mine borehole following isolation. Geomicrobiol J 20:517–548. https://doi.org/10.1080/713851170
Murakami Y, Fujita Y, Naganuma T, Iwatsuki T (2002) Abundance and viability of the groundwater microbial communities from a borehole in the Tono uranium deposit area, central Japan. Microbes Environ 17:63–74. https://doi.org/10.1264/jsme2.2002.63
Musat N, Halm H, Winterholler B, Hoppe P, Peduzzi S, Hillion F, Horreard F, Amann R, Jørgensen BB, Kuypers MMM (2008) A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci U S A 105:17861–17866. https://doi.org/10.1073/pnas.0809329105
Nealson KH, Inagaki F, Takai K (2005) Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care? Trends Microbiol 13:405–410. https://doi.org/10.1016/j.tim.2005.07.010
Nyyssönen M, Bomberg M, Kapanen A, Nousiainen A, Pitkänen P, Itävaara M (2012) Methanogenic and sulphate-reducing microbial communities in deep groundwater of crystalline rock fractures in Olkiluoto, Finland. Geomicrobiol J 29:863–878. https://doi.org/10.1080/01490451.2011.635759
Nyyssönen M, Hultman J, Ahonen L, Kukkonen I, Paulin L, Laine P, Itävaara M, Auvinen P (2014) Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield. The ISME journal 8:126–138. https://doi.org/10.1038/ismej.2013.125
Onstott T, Moser DP, Pfiffner SM, Fredrickson JK, Brockman FJ, Phelps T, White D, Peacock A, Balkwill D, Hoover R (2003) Indigenous and contaminant microbes in ultradeep mines. Environ Microbiol 5:1168–1191. https://doi.org/10.1046/j.1462-2920.2003.00512.x
Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 75:361–422. https://doi.org/10.1128/MMBR.00039-10
Oremland RS, Culbertson C, Simoneit B (1982) Methanogenic activity in sediment from Leg 64, Gulf of California. In: Curray J, Moore, DG, et al., (ed) Initial Reports of the Deep Sea Drilling Project, vol 64. US Government Printing pp 759–762. doi: https://doi.org/10.2973/dsdp.proc.64.122.1982
Osburn MR, LaRowe DE, Momper LM, Amend JP (2014) Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA. Front Microbiol 5. https://doi.org/10.3389/fmicb.2014.00610
Pedersen K (1997) Microbial life in deep granitic rock. FEMS Microbiol Rev 20:399–414. https://doi.org/10.1016/S0168-6445(97)00022-3
Pedersen K (1999) Subterranean microorganisms and radioactive waste disposal in Sweden. Eng Geol 52:163–176. https://doi.org/10.1016/S0013-7952(99)00004-6
Pedersen K (2000) Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185:9–16. https://doi.org/10.1111/j.1574-6968.2000.tb09033.x
Pedersen K (2012) Subterranean microbial populations metabolize hydrogen and acetate under in situ conditions in granitic groundwater at 450 m depth in the Äspö Hard Rock Laboratory, Sweden. FEMS Microbiol Ecol 81:217–229. https://doi.org/10.1111/j.1574-6941.2012.01370.x.
Phelps T, Murphy E, Pfiffner S, White D (1994) Comparison between geochemical and biological estimates of subsurface microbial activities. Microb Ecol 28:335–349. https://doi.org/10.1007/BF00662027
Probst AJ, Birarda G, Holman H-YN, DeSantis TZ, Wanner G, Andersen GL, Perras AK, Meck S, Völkel J, Bechtel HA (2014a) Coupling genetic and chemical microbiome profiling reveals heterogeneity of archaeome and bacteriome in subsurface biofilms that are dominated by the same archaeal species. PLoS One 9(6):e99801. https://doi.org/10.1371/journal.pone.0099801
Probst AJ, Holman H-YN, DeSantis TZ, Andersen GL, Birarda G, Bechtel HA, Piceno YM, Sonnleitner M, Venkateswaran K, Moissl-Eichinger C (2013) Tackling the minority: sulfate-reducing bacteria in an archaea-dominated subsurface biofilm. The ISME journal 7:635–651. https://doi.org/10.1038/ismej.2012.133
Probst AJ, Moissl-Eichinger C (2015) “Altiarchaeales”: uncultivated Archaea from the subsurface. Life 5:1381–1395. https://doi.org/10.3390/life5021381
Probst AJ, Weinmaier T, Raymann K, Perras A, Emerson JB, Rattei T, Wanner G, Klingl A, Berg IA, Yoshinaga M (2014b) Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nat Commun 5:5497. https://doi.org/10.1038/ncomms6497
Puente-Sánchez F, Moreno-Paz M, Rivas L, Cruz-Gil P, García-Villadangos M, Gómez M, Postigo M, Garrido P, González-Toril E, Briones C (2014) Deep subsurface sulfate reduction and methanogenesis in the Iberian Pyrite Belt revealed through geochemistry and molecular biomarkers. Geobiology 12:34–47. https://doi.org/10.1111/gbi.12065
Purkamo L, Bomberg M, Nyyssönen M, Kukkonen I, Ahonen L, Itävaara M (2015) Heterotrophic communities supplied by ancient organic carbon predominate in deep Fennoscandian bedrock fluids. Microb Ecol 69:319–332. https://doi.org/10.1007/s00248-014-0490-6
Purkamo L, Bomberg M, Nyyssönen M, Kukkonen I, Ahonen L, Kietäväinen R, Itävaara M (2013) Dissecting the deep biosphere: retrieving authentic microbial communities from packer-isolated deep crystalline bedrock fracture zones. FEMS Microbiol Ecol 85:324–337. https://doi.org/10.1111/1574-6941.12126
Rajala P, Bomberg M (2017) Reactivation of deep subsurface microbial community in response to methane or methanol amendment. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.00431
Rajala P, Bomberg M, Kietäväinen R, Kukkonen I, Ahonen L, Nyyssönen M, Itävaara M (2015) Rapid reactivation of deep subsurface microbes in the presence of C-1 compounds. Microorganisms 3:17–33. https://doi.org/10.3389/fmicb.2017.00431
Rempfert KR, Miller HM, Bompard N, Nothaft D, Matter JM, Kelemen P, Fierer N, Templeton AS (2017) Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.00056
Rogers J, Bennett P, Choi W (1998) Feldspars as a source of nutrients for microorganisms. Am Mineral 83:1532–1540. https://doi.org/10.2138/am-1998-11-1241
Sahl JW, Schmidt R, Swanner ED, Mandernack KW, Templeton AS, Kieft TL, Smith RL, Sanford WE, Callaghan RL, Mitton JB (2008) Subsurface microbial diversity in deep-granitic-fracture water in Colorado. Appl Environ Microbiol 74:143–152. https://doi.org/10.1128/AEM.01133-07
Shelobolina E, Xu H, Konishi H, Kukkadapu R, Wu T, Blöthe M, Roden E (2012) Microbial lithotrophic oxidation of structural Fe (II) in biotite. Appl Environ Microbiol 78:5746–5752. https://doi.org/10.1128/AEM.01034-12
Shock EL (2009) Minerals as energy sources for microorganisms. Econ Geol 104:1235–1248. https://doi.org/10.2113/gsecongeo.104.8.1235
Sohlberg E, Bomberg M, Miettinen H, Nyyssönen M, Salavirta H, Vikman M, Itävaara M (2015) Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.00573
Stevens TO, McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–455. https://doi.org/10.1126/science.270.5235.450
Suzuki S, Si I, Wu A, Cheung A, Tenney A, Wanger G, Kuenen JG, Nealson KH (2013) Microbial diversity in The Cedars, an ultrabasic, ultrareducing, and low salinity serpentinizing ecosystem. Proc Natl Acad Sci 110:15336–15341. https://doi.org/10.1073/pnas.1302426110
Suzuki Y, Konno U, Fukuda A, Komatsu DD, Hirota A, Watanabe K, Togo Y, Morikawa N, Hagiwara H, Aosai D (2014) Biogeochemical signals from deep microbial life in terrestrial crust. PLoS One 9:e113063. https://doi.org/10.1371/journal.pone.0113063
Swanner ED, Nell RM, Templeton AS (2011) Ralstonia species mediate Fe-oxidation in circumneutral, metal-rich subsurface fluids of Henderson mine, CO. Chem Geol 284:339–350. https://doi.org/10.1016/j.chemgeo.2011.03.015
Swanner ED, Templeton AS (2011) Potential for nitrogen fixation and nitrification in the granite-hosted subsurface at Henderson Mine, CO. Front Microbiol 2. https://doi.org/10.3389/fmicb.2011.00254
Takai K, Moser DP, DeFlaun M, Onstott TC, Fredrickson JK (2001) Archaeal diversity in waters from deep South African gold mines. Appl Environ Microbiol 67:5750–5760. https://doi.org/10.1128/AEM.67.21.5750-5760.2001
Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl Microbiol Biotechnol 97:7529–7541. https://doi.org/10.1007/s00253-013-4954-2
Vreeland RH, Piselli Jr AF, McDonnough S, Meyers S (1998) Distribution and diversity of halophilic bacteria in a subsurface salt formation. Extremophiles 2:321–331. https://doi.org/10.1007/s007920050075
Whelan J, Oremland R, Tarafa M, Smith R, Howarth R, Lee C (1986) Evidence for sulfate-reducing and methane-producing microorganisms in sediments from sites 618, 619, and 622. In: Bouma AH CJ, Meyer AW et al (ed) Initial reports of the deep sea drilling project, vol 96. US Govt Printing Office, Washington, pp 767–775. doi: https://doi.org/10.2973/dsdp.proc.96.147.1986
Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583. https://doi.org/10.1073/pnas.95.12.6578
Wilkins M, Daly R, Mouser P, Trexler R, Wrighton K, Sharma S, Cole D, Biddle J, Denis E, Fredrickson J, Kieft T, Onstott T, Petersen L, Pfiffner S, Phelps T, Schrenk M (2014) Trends and future challenges in sampling the deep terrestrial biosphere. Front Microbiol 5. https://doi.org/10.3389/fmicb.2014.00481
Wouters K, Moors H, Boven P, Leys N (2013) Evidence and characteristics of a diverse and metabolically active microbial community in deep subsurface clay borehole water. FEMS Microbiol Ecol 86:458–473. https://doi.org/10.1111/1574-6941.12171
Wu X, Holmfeldt K, Hubalek V, Lundin D, Åström M, Bertilsson S, Dopson M (2015) Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations. The Isme Journal 10:1192–1203. https://doi.org/10.1038/ismej.2015.185
Wu X, Pedersen K, Edlund J, Eriksson L, Åström M, Andersson AF, Bertilsson S, Dopson M (2017) Potential for hydrogen-oxidizing chemolithoautotrophic and diazotrophic populations to initiate biofilm formation in oligotrophic, deep terrestrial subsurface waters. Microbiome 5:37. https://doi.org/10.1186/s40168-017-0253-y
Zhang G, Dong H, Jiang H, Xu Z, Eberl DD (2006) Unique microbial community in drilling fluids from Chinese continental scientific drilling. Geomicrobiol J 23:499–514. https://doi.org/10.1080/01490450600875860
Zhang G, Dong H, Xu Z, Zhao D, Zhang C (2005) Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese Continental Scientific Drilling Project in China. Appl Environ Microbiol 71:3213–3227. https://doi.org/10.1128/AEM.71.6.3213-3227.2005
Zinke LA, Mullis MM, Bird JT, Marshall IP, Jørgensen BB, Lloyd KG, Amend JP, Kiel Reese B (2017) Thriving or surviving? Evaluating active microbial guilds in Baltic Sea sediment. Environ Microbiol Rep 9:528–536. https://doi.org/10.1111/1758-2229.12578
Zobell CE (1938) Studies on the bacterial flora of marine bottom sediments. J Sediment Res 8:10–18. https://doi.org/10.1306/D4268FD6-2B26-11D7-8648000102C1865D
ZoBell CE, Anderson DQ (1936) Vertical distribution of bacteria in marine sediments. AAPG Bull 20:258–269