The decision rule approach to optimization under uncertainty: methodology and applications

Computational Management Science - Tập 16 Số 4 - Trang 545-576 - 2019
Angelos Georghiou1, Daniel Kühn2, Wolfram Wiesemann3
1Desautels Faculty of Management, McGill University, Montreal, Canada
2Risk Analytics and Optimization Chair, EPFL, Lausanne, Switzerland
3Imperial College Business School, Imperial College London, London, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

An Y, Zeng B, Zhang Y, Zhao L (2014) Reliable $$p$$ p -median facility location problem: two-stage robust models and algorithms. Transp Res B 64:54–72

Ardestani-Jaafari A, Delage E (2016) Robust optimization of sums of piecewise linear functions with application to inventory problems. Oper Res 64(2):474–494

Atamtürk A, Zhang M (2007) Two-stage robust network flow and design under demand uncertainty. Oper Res 55(4):662–673

Ayoub J, Poss M (2016) Decomposition for adjustable robust linear optimization subject to uncertainty polytope. Comput Manag Sci 13(2):219–239

Bandi C, Trichakis N, Vayanos P (2017) Robust multiclass queuing theory for wait time estimation in resource allocation systems. Manag Sci (forthcoming)

Ben-Tal A, Goryashko A, Guslitzer E, Nemirovski A (2004) Adjustable robust solutions of uncertain linear programs. Math Program 99(2):351–376

Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton

Bertsekas DP (2001) Dynamic programming and optimal control. Athena Scientific, Belmont

Bertsimas D, Caramanis C (2010) Finite adaptibility in multistage linear optimization. IEEE Trans Automat Contr 55(12):2751–2766

Bertsimas D, Georghiou A (2015) Design of near optimal decision rules in multistage adaptive mixed-integer optimization. Oper Res 63(3):610–627

Bertsimas D, Georghiou A (2018) Binary decision rules for multistage adaptive mixed-integer optimization. Math Program 167(2):395–433

Bertsimas D, Goyal V (2010) On the power of robust solutions in two-stage stochastic and adaptive optimization problems. Math Oper Res 35(2):284–305

Bertsimas D, Goyal V (2012) On the power and limitations of affine policies in two-stage adaptive optimization. Math Program 134(2):491–531

Bertsimas D, de Ruiter FJCT (2016) Duality in two-stage adaptive linear optimization: faster computation and stronger bounds. INFORMS J Comput 28(3):500–511

Bertsimas D, Iancu DA, Parrilo PA (2010) Optimality of affine policies in multi-stage robust optimization. Math Oper Res 35(2):363–394

Bertsimas D, Brown DB, Caramanis C (2011) Theory and applications of robust optimization. SIAM Rev 53(3):464–501

Bertsimas D, Goyal V, Sun XA (2011) A geometric characterization of the power of finite adaptability in multistage stochastic and adaptive optimization. Math Oper Res 36(1):24–54

Bertsimas D, Iancu DA, Parrilo PA (2011) A hierarchy of near-optimal policies for multistage adaptive optimization. IEEE Trans Automat Contr 56(12):2809–2824

Bertsimas D, Thiele A (2006) Robust and data-driven optimization: modern decision making under uncertainty. In: INFORMS TutoRials in operations research: models, methods, and applications for innovative decision making, pp 95–122

Bertsimas D, Vayanos P (2017) Data-driven learning in dynamic pricing using adaptive optimization. Optimization Online

Birge JR, Louveaux F (1997) Introduction to stochastic programming. Springer, New York

Campi MC, Garatti S (2011) A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality. J Optim Theory Appl 148(2):257–280

Charnes A, Cooper WW (1959) Chance-constrained programming. Manag Sci 6(1):73–79

Charnes A, Cooper WW, Symonds GH (1958) Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manag Sci 4(3):235–263

Chen X, Zhang Y (2009) Uncertain linear programs: extended affinely adjustable robust counterparts. Oper Res 57(6):1469–1482

Chen P, Papageorgiou LG, Pinto JM (2008) Medium-term planning of single-stage single-unit multiproduct plants using a hybrid discrete/continuous-time MILP model. Ind Eng Chem Res 47(6):1925–1934

Chen X, Sim M, Sun P, Zhang J (2008) A linear decision-based approximation approach to stochastic programming. Oper Res 56(2):344–357

Chvátal V (1983) Linear programming. WH Freeman, New York

Daskin MS, Snyder LV, Berger RT (2005) Logistics systems: design and optimization. In: Langevin A, Riopel D (eds) Facility location in supply chain design. Springer, New York, pp 39–65

Delage E, Iancu DA (2015) Robust multistage decision making. In: The operations research revolution. INFORMS TutORials in operations research: models, methods, and applications for innovative decision making, pp 20–46

Dupačová J, Consigli G, Wallace S (2000) Scenarios for multistage stochastic programs. Annal Oper Res 100(1):25–53

Eisner M, Olsen P (1975) Duality for stochastic programming interpreted as L.P. in $${L}_p$$ L p -space. SIAM J Appl Math 28(4):779–792

Floudas CA, Lin X (2005) Mixed integer linear programming in process scheduling: modeling, algorithms, and applications. Annal Oper Res 139(1):131–162

Gabrel V, Murat C, Thiele A (2014) Recent advances in robust optimization: an overview. Eur J Oper Res 235(3):471–483

Garstka SJ, Wets RJB (1974) On decision rules in stochastic programming. Math Program 7(1):117–143

Georghiou A, Wiesemann W, Kuhn D (2015) Generalized decision rule approximations for stochastic programming via liftings. Math Program 152(1):301–338

Georghiou A, Tsoukalas A, Wiesemann W (2017) A primal-dual lifting scheme for two-stage robust optimization. Optimization Online

Georghiou A, Tsoukalas A, Wiesemann W (2018) Robust dual dynamic programming. Oper Res (forthcoming)

Gilboa I, Schmeidler D (1989) Maxmin expected utility with non-unique prior. J Math Econ 18(2):141–153

Goh J, Sim M (2010) Distributionally robust optimization and its tractable approximations. Oper Res 58(4):902–917

Gorissen BL, Yanğkoğlu İ, den Hertog D (2015) A practical guide to robust optimization. Omega 53:124–137

Gounaris CE, Wiesemann W, Floudas CA (2013) The robust capacitated vehicle routing problem under demand uncertainty. Oper Res 61(3):677–683

Guslitser E (2002) Uncertainty-immunized solutions in linear programming. Master’s thesis, Technion

Hadjiyiannis MJ, Goulart PJ, Kuhn DA (2011) scenario approach for estimating the suboptimality of linear decision rules in two-stage robust optimization. In: Proceedings of the 50th IEEE conference on decision and control and european control conference, pp 7386–7391

Hadjiyiannis MJ, Goulart PJ, Kuhn D (2011) An efficient method to estimate the suboptimality of affine controllers. IEEE Trans Automat Contr 56(12):2841–2853

Hanasusanto GA, Kuhn D (2018) Conic programming reformulations of two-stage distributionally robust linear programs over Wasserstein balls. Oper Res 66(3):849–869

Hanasusanto GA, Kuhn D, Wiesemann W (2015) $$K$$ K -adaptability in two-stage robust binary programming. Oper Res 63(4):877–891

Hochreiter R, Pflug GC (2007) Financial scenario generation for stochastic multi-stage decision processes as facility location problems. Annal Oper Res 152(1):257–272

IBM ILOG CPLEX Homepage (2015). https://www.ibm.com/analytics/cplex-optimizer

Kall P, Wallace S (1994) Stochastic programming. Wiley, New York

Kong Q, Li S, Liu N, Teo C-P, Yan Z (2017) Robust multi-period vehicle routing under customer order uncertainty. http://www.columbia.edu/~nl2320/doc/Noshow-MS-1030c.pdf

Kuhn D, Wiesemann W, Georghiou A (2011) Primal and dual linear decision rules in stochastic and robust optimization. Math Program 130(1):177–209

Kuhn D, Parpas P, Rustem B (2008) Stochastic optimization of investment planning problems in the electric power industry. In: Georgiadis M, Kikkinides E, Pistikopoulos E (eds) Process systems engineering: volume 5: energy systems engineering, Wiley-VCH, ch. 4, pp 215–230

Lappas NH, Gounaris CE (2016) Multi-stage adjustable robust optimization for process scheduling under uncertainty. AIChE J 62(5):1646–1667

Liebchen C, Lübbecke M, Möhring RH, Stiller S (2009) The concept of recoverable robustness, linear programming recovery, and railway applications. In: Ahuja RK, Möhring RH, Zaroliagis CD (eds) Robust and online large-scale optimization: models and techniques for transportation systems. Springer, New York, pp 1–27

Liu S, Pinto JM, Papageorgiou LG (2008) A TSP-based MILP model for medium-term planning of single-stage continuous multiproduct plants. Ind Eng Chem Res 47(20):7733–7743

Lorca A, Sun XA (2015) Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind. IEEE Trans Power Syst 30(4):1702–1713

Lorca A, Sun XA (2017) Multistage robust unit commitment with dynamic uncertainty sets and energy storage. IEEE Trans Power Syst 32(3):1678–1688

Meixell MJ, Gargeya VB (2005) Global supply chain design: a literature review and critique. Transp Res E 41(6):531–550

Melo M, Nickel S, da Gama FS (2009) Facility location and supply chain management: a review. Eur J Oper Res 196(2):401–412

Min H, Zhou G (2002) Supply chain modeling: past, present and future. Comput Ind Eng 43(1–2):231–249

Nemirovski A, Shapiro A (2007) Convex approximations of chance constrained programs. SIAM J Optim 17(4):969–996

Pereira MVF, Pinto LMVG (1991) Multi-stage stochastic optimization applied to energy planning. Math Program 52(1):359–375

Pflug GC (2000) Some remarks on the value-at-risk and the conditional value-at-risk. Probabilistic constrained optimization. Springer, New York, pp 272–281

Pflug GC (2001) Scenario tree generation for multiperiod financial optimization by optimal discretization. Math Program 89(2):251–271

Pflug GC, Pichler A (2014) Multistage stochastic optimization. Springer, New York

Pflug GC, Römisch W (2007) Modeling, measuring and managing risk. World Scientific, Singapore

Rockafellar R, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2:21–42

Ruiz C, Conejo AJ (2015) Robust transmission expansion planning. Eur J Oper Res 242(2):390–401

Santoso T, Ahmed S, Goetschalckx M, Shapiro A (2005) A stochastic programming approach for supply chain network design under uncertainty. Eur J Oper Res 167(1):96–115

Shapiro A (2011) Analysis of stochastic dual dynamic programming method. Eur J Oper Res 209(1):63–72

Shapiro A, Dentcheva D, Ruszczyński A (2009) Lectures on stochastic programming: modeling and theory. SIAM

Simchi-Levi D, Wang H, Wei Y (2018) Constraint generation for two-stage robust network flow problem

Subramanyam A, Gounaris C, Wiesemann W (2017a) $$K$$ K -adaptability in two-stage mixed-integer robust optimization. Optimization Online

Subramanyam A, Mufalli F, Pinto JM, Gounaris CE (2017b) Robust multi-period vehicle routing under customer order uncertainty. Optimization Online

Tsiakis P, Shah N, Pantelides CC (2001) Design of multi-echelon supply chain networks under demand uncertainty. Ind Eng Chem Res 40(16):3585–3604

van der Vlerk MH (1996–2007) Stochastic programming bibliography. http://www.eco.rug.nl/mally/spbib.html

Vayanos P, Kuhn D, Rustem B (2012) A constraint sampling approach for multi-stage robust optimization. Automatica 48(3):459–471

Vayanos P, Kuhn D, Rustem B (2011) Decision rules for information discovery in multi-stage stochastic programming. In: Proceedings of the 50th IEEE conference on decision and control and european control conference, pp 7368–7373

Verderame PM, Elia JA, Li J, Floudas CA (2010) Planning and scheduling under uncertainty: a review across multiple sectors. Ind Eng Chem Res 49(9):3993–4017

Warrington J, Goulart P, Mariéthoz S, Morari M (2013) Policy-based reserves for power systems. IEEE Trans Power Syst 28(4):4427–4437

Xu G, Burer S (2018) A copositive approach for two-stage adjustable robust optimization with uncertain right-hand sides. Comput Optim Appl 70(1):33–59

Yanıkoğlu İ, Gorissen BL, den Hertog D (2017) Adjustable robust optimization–a survey and tutorial ResearchGate

Zeng B, Zhao L (2013) Solving two-stage robust optimization problems using a column-and-constraint generation method. Oper Res Lett 41(5):457–561