Bên tối của rau hữu cơ: tương tác của vi khuẩn gây bệnh đường ruột ở người với thực vật

Plant Biotechnology Reports - Tập 13 - Trang 105-110 - 2019
Sung Hee Jo1,2, Jeong Mee Park1,2
1Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
2Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, South Korea

Tóm tắt

Nhiều nghiên cứu gần đây báo cáo rằng một số vi khuẩn gây bệnh phụ thuộc vào nhiều vật chủ trong chu trình sống của chúng. Cụ thể, các vi khuẩn Gram âm gây bệnh đường ruột, chẳng hạn như Salmonella hay Escherichia coli O157:H7, đều có khả năng lây nhiễm cho cả người và thực vật. Những vi khuẩn gây bệnh đa vương quốc này gây ra các vụ bùng phát liên quan đến thực phẩm ở con người thông qua sự xâm nhập tích cực vào vật chủ. Trong bài đánh giá hiện tại, chúng tôi đề cập đến các tương tác giữa vi khuẩn gây bệnh đường ruột ở người và thực vật. Đặc biệt, chúng tôi mô tả trạng thái hiện tại của kiến thức về các cơ chế bám dính, xâm nhập và định cư của vi khuẩn gây bệnh đường ruột ở người trên thực vật, cũng như mô tả các phản ứng miễn dịch bẩm sinh của thực vật đối với các yếu tố gây virulence do những vi khuẩn này sản xuất.

Từ khóa

#vi khuẩn gây bệnh đường ruột #thực vật #xâm nhập #bám dính #miễn dịch thực vật #Salmonella #Escherichia coli

Tài liệu tham khảo

Asai S, Shirasu K (2015) Plant cells under siege: plant immune system versus pathogen effectors. Curr Opin Plant Biol 28:1–8 Barak JD, Gorski L, Naraghi-Arani P, Charkowski AO (2005) Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Appl Environ Microbiol 71:5685–5691 Barak JD, Jahn CE, Gibson DL, Charkowski AO (2007) The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica. Mol Plant Microbe Interact 20:1083–1091 Berger CN, Shaw RK, Brown DJ, Mather H, Clare S, Dougan G, Pallen MJ, Frankel G (2009) Interaction of Salmonella enterica with basil and other salad leaves. ISME J 3:261–265 Berger CN, Sodha SV, Shaw RK, Griffin PM, Pink D, Hand P, Frankel G (2010) Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol 12:2385–2397 Bhavsar AP, Brown NF, Stoepel J, Wiermer M, Martin DD, Hsu KJ, Imami K, Ross CJ, Hayden MR, Foster LJ, Li X, Hieter P, Finlay BB (2013) The Salmonella type III effector SspH2 specifically exploits the NLR co-chaperone activity of SGT1 to subvert immunity. PLoS Pathog 9:e1003518 Cevallos-Cevallos JM, Gu G, Danyluk MD, van Bruggen AH (2012) Adhesion and splash dispersal of Salmonella enterica Typhimurium on tomato leaflets: effects of rdar morphotype and trichome density. Int J Food Microbiol 160:58–64 Cooley MB, Miller WG, Mandrell RE (2003) Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae. Appl Environ Microbiol 69:4915–4926 Dong Y, Iniguez AL, Ahmer BM, Triplett EW (2003) Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula. Appl Environ Microbiol 69:1783–1790 Erickson MC, Webb CC, Diaz-Perez JC, Phatak SC, Silvoy JJ, Davey L, Payton AS, Liao J, Ma L, Doyle MP (2010) Infrequent internalization of Escherichia coli O157:H7 into field-grown leafy greens. J Food Prot 73:500–506 Garcia AV, Charrier A, Schikora A, Bigeard J, Pateyron S, de Tauzia-Moreau ML, Evrard A, Mithofer A, Martin-Magniette ML, Virlogeux-Payant I, Hirt H (2014) Salmonella enterica flagellin is recognized via FLS2 and activates PAMP-triggered immunity in Arabidopsis thaliana. Mol Plant 7:657–674 Golberg D, Kroupitski Y, Belausov E, Pinto R, Sela S (2011) Salmonella Typhimurium internalization is variable in leafy vegetables and fresh herbs. Int J Food Microbiol 145:250–257 Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011 Gu G, Hu J, Cevallos-Cevallos JM, Richardson SM, Bartz JA, van Bruggen AH (2011) Internal colonization of Salmonella enterica serovar Typhimurium in tomato plants. PLoS One 6:e27340 Hussain MA, Dawson CO (2013) Economic impact of food safety outbreaks on food businesses. Foods 2:585–589 Irvine WN, Gillespie IA, Smyth FB, Rooney PJ, McClenaghan A, Devine MJ, Tohani VK, Outbreak Control T (2009) Investigation of an outbreak of Salmonella enterica serovar Newport infection. Epidemiol Infect 137:1449–1456 Jayaraman D, Valdes-Lopez O, Kaspar CW, Ane JM (2014) Response of Medicago truncatula seedlings to colonization by Salmonella enterica and Escherichia coli O157:H7. PLoS One 9:e87970 Kalily E, Hollander A, Korin B, Cymerman I, Yaron S (2016) Mechanisms of resistance to linalool in Salmonella Senftenberg and their role in survival on basil. Environ Microbiol 18:3673–3688 Kisluk G, Kalily E, Yaron S (2013) Resistance to essential oils affects survival of Salmonella enterica serovars in growing and harvested basil. Environ Microbiol 15:2787–2798 Klerks MM, Franz E, van Gent-Pelzer M, Zijlstra C, van Bruggen AH (2007) Differential interaction of Salmonella enterica serovars with lettuce cultivars and plant-microbe factors influencing the colonization efficiency. ISME J 1:620–631 Klerks MM, van Gent-Pelzer M, Franz E, Zijlstra C, van Bruggen AH (2007) Physiological and molecular responses of Lactuca sativa to colonization by Salmonella enterica serovar Dublin. Appl Environ Microbiol 73:4905–4914 Kroupitski Y, Golberg D, Belausov E, Pinto R, Swartzberg D, Granot D, Sela S (2009) Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Appl Environ Microbiol 75:6076–6086 Kwan G, Charkowski AO, Barak JD (2013) Salmonella enterica suppresses Pectobacterium carotovorum subsp. carotovorum population and soft rot progression by acidifying the microaerophilic environment. mBio 4:e00557–12 Li H, Xu H, Zhou Y, Zhang J, Long C, Li S, Chen S, Zhou JM, Shao F (2007) The phosphothreonine lyase activity of a bacterial type III effector family. Science 315:1000–1003 Lim JA, Lee DH, Heu S (2014) The interaction of human enteric pathogens with plants. Plant Pathol J 30:109–116 Martinez-Vaz BM, Fink RC, Diez-Gonzalez F, Sadowsky MJ (2014) Enteric pathogen–plant interactions: molecular connections leading to colonization and growth and implications for food safety. Microbes Environ 29:123–135 Marvasi M, Noel JT, George AS, Farias MA, Jenkins KT, Hochmuth G, Xu Y, Giovanonni JJ, Teplitski M (2014) Ethylene signalling affects susceptibility of tomatoes to Salmonella. Microb Biotechnol 7:545–555 Meng F, Altier C, Martin GB (2013) Salmonella colonization activates the plant immune system and benefits from association with plant pathogenic bacteria. Environ Microbiol 15:2418–2430 Milillo SR, Badamo JM, Boor KJ, Wiedmann M (2008) Growth and persistence of Listeria monocytogenes isolates on the plant model Arabidopsis thaliana. Food Microbiol 25:698–704 Mootian G, Wu WH, Matthews KR (2009) Transfer of Escherichia coli O157:H7 from soil, water, and manure contaminated with low numbers of the pathogen to lettuce plants. J Food Prot 72:2308–2312 Neumann C, Fraiture M, Hernandez-Reyes C, Akum FN, Virlogeux-Payant I, Chen Y, Pateyron S, Colcombet J, Kogel KH, Hirt H, Brunner F, Schikora A (2014) The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells. Front Microbiol 5:548 Ohl ME, Miller SI (2001) Salmonella: a model for bacterial pathogenesis. Annu Rev Med 52:259–274 Ongeng D, Vasquez GA, Muyanja C, Ryckeboer J, Geeraerd AH, Springael D (2011) Transfer and internalisation of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in cabbage cultivated on contaminated manure-amended soil under tropical field conditions in Sub-Saharan Africa. Int J Food Microbiol 145:301–310 Plotnikova JM, Rahme LG, Ausubel FM (2000) Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis. Plant Physiol 124:1766–1774 Prithiviraj B, Bais HP, Jha AK, Vivanco JM (2005) Staphylococcus aureus pathogenicity on Arabidopsis thaliana is mediated either by a direct effect of salicylic acid on the pathogen or by SA-dependent, NPR1-independent host responses. Plant J 42:417–432 Rossez Y, Holmes A, Wolfson EB, Gally DL, Mahajan A, Pedersen HL, Willats WG, Toth IK, Holden NJ (2014) Flagella interact with ionic plant lipids to mediate adherence of pathogenic Escherichia coli to fresh produce plants. Environ Microbiol 16:2181–2195 Roy D, Panchal S, Rosa BA, Melotto M (2013) Escherichia coli O157:H7 induces stronger plant immunity than Salmonella enterica Typhimurium SL1344. Phytopathology 103:326–332 Saldana Z, Sanchez E, Xicohtencatl-Cortes J, Puente JL, Giron JA (2011) Surface structures involved in plant stomata and leaf colonization by Shiga-toxigenic Escherichia coli O157:H7. Front Microbiol 2:119 Schikora A, Carreri A, Charpentier E, Hirt H (2008) The dark side of the salad: Salmonella typhimurium overcomes the innate immune response of Arabidopsis thaliana and shows an endopathogenic lifestyle. PLoS One 3:e2279 Schikora A, Virlogeux-Payant I, Bueso E, Garcia AV, Nilau T, Charrier A, Pelletier S, Menanteau P, Baccarini M, Velge P, Hirt H (2011) Conservation of Salmonella infection mechanisms in plants and animals. PLoS One 6:e24112 Seo S, Matthews KR (2012) Influence of the plant defense response to Escherichia coli O157:H7 cell surface structures on survival of that enteric pathogen on plant surfaces. Appl Environ Microbiol 78:5882–5889 Shirron N, Yaron S (2011) Active suppression of early immune response in tobacco by the human pathogen Salmonella Typhimurium. PLoS One 6:e18855 Solomon EB, Yaron S, Matthews KR (2002) Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization. Appl Environ Microbiol 68:397–400 Ustun S, Muller P, Palmisano R, Hensel M, Bornke F (2012) SseF, a type III effector protein from the mammalian pathogen Salmonella enterica, requires resistance-gene-mediated signalling to activate cell death in the model plant Nicotiana benthamiana. New Phytol 194:1046–1060 Wachtel MR, Charkowski AO (2002) Cross-contamination of lettuce with Escherichia coli O157:H7. J Food Prot 65:465–470 Xicohtencatl-Cortes J, Sanchez Chacon E, Saldana Z, Freer E, Giron JA (2009) Interaction of Escherichia coli O157:H7 with leafy green produce. J Food Prot 72:1531–1537 Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J, Chen S, Tang X, Zhou JM (2007) A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe 1:175–185