The dangerous link between coal dust exposure and DNA damage: unraveling the role of some of the chemical agents and oxidative stress

Environmental Geochemistry and Health - Tập 45 - Trang 7081-7097 - 2023
Alvaro Miranda-Guevara1, Amner Muñoz-Acevedo2, Ornella Fiorillo-Moreno1,3,4, Antonio Acosta-Hoyos1, Leonardo Pacheco-Londoño1, Milton Quintana-Sosa1, Yurina De Moya1, Johnny Dias5, Guilherme Soares de Souza5, Wilner Martinez-Lopez6, Ana Letícia Hilário Garcia7, Juliana da Silva7,8, Malu Siqueira Borges8, João Antonio Pêgas Henriques9,10, Grethel León-Mejía1
1Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla, Colombia
2Grupo de Investigación en Química y Biología, Universidad del Norte, Barranquilla, Colombia
3Clínica Iberoamerica, Barranquilla, Colombia
4Clinica El Carmen, Barranquilla, Colombia
5Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
6Ministry of Education and Culture, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
7Laboratory of Genetic Toxicology, La Salle University (UniLaSalle), Canoas, Brazil
8Laboratory of Genetic Toxicology. PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, Brazil
9Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
10Programa de Pós-Graduação em Biotecnologia e em Ciências Médicas, Universidade do Vale do Taquari - UNIVATES, Lajeado, Brazil

Tóm tắt

Exposure to coal mining dust poses a substantial health hazard to individuals due to the complex mixture of components released during the extraction process. This study aimed to assess the oxidative potential of residual coal mining dust on human lymphocyte DNA and telomeres and to perform a chemical characterization of coal dust and urine samples. The study included 150 individuals exposed to coal dust for over ten years, along with 120 control individuals. The results revealed significantly higher levels of DNA damage in the exposed group, as indicated by the standard comet assay, and oxidative damage, as determined by the FPG-modified comet assay. Moreover, the exposed individuals exhibited significantly shorter telomeres compared to the control group, and a significant correlation was found between telomere length and oxidative DNA damage. Using the PIXE method on urine samples, significantly higher concentrations of sodium (Na), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K), iron (Fe), zinc (Zn), and bromine (Br) were observed in the exposed group compared to the control group. Furthermore, men showed shorter telomeres, greater DNA damage, and higher concentrations of nickel (Ni), calcium (Ca), and chromium (Cr) compared to exposed women. Additionally, the study characterized the particles released into the environment through GC–MS analysis, identifying several compounds, including polycyclic aromatic hydrocarbons (PAHs) such as fluoranthene, naphthalene, anthracene, 7H-benzo[c]fluorene, phenanthrene, pyrene, benz[a]anthracene, chrysene, and some alkyl derivatives. These findings underscore the significant health risks associated with exposure to coal mining dust, emphasizing the importance of further research and the implementation of regulatory measures to safeguard the health of individuals in affected populations.

Tài liệu tham khảo

Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25, 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011 Addinsoft (2022) XLSTAT statistical and data analysis solution. New York. Azqueta, A., Ladeira, C., Giovannelli, L., Boutet-Robinet, E., Bonassi, S., Neri, M., Gajski, G., Duthie, S., & Del Bo’, C., Riso, P., Koppen, G., Basaran, N., Collins, A., Møller, P.,. (2020). Application of the comet assay in human biomonitoring: An hCOMET perspective. Mutation Research., 783, 108288. https://doi.org/10.1016/j.mrrev.2019.108288 Balasubramanyam, M., Adaikalakoteswari, A., Sameermahmood, Z.,& Mohan, V. (2010). Biomarkers of oxidative stress: Methods and measures of oxidative DNA damage (COMET Assay) and telomere shortening. In: Uppu, R.M., Murthy, S.N., Pryor, W.A., & Parinandi, N.L. (Eds.), Free Radicals and Antioxidant Protocols, Methods in Molecular Biology. Humana Press, Totowa, NJ, pp. 245–261. https://doi.org/10.1007/978-1-60327-029-8_15 Barnes, R. P., Fouquerel, E., & Opresko, P. L. (2019). The impact of oxidative DNA damage and stress on telomere homeostasis. Mechanisms of Ageing and Development, 177, 37–45. https://doi.org/10.1016/j.mad.2018.03.013 Bocato, M. Z., Bianchi Ximenez, J. P., Hoffmann, C., & Barbosa, F. (2019). An overview of the current progress, challenges, and prospects of human biomonitoring and exposome studies. Journal of Toxicology & Environmental Health Part b: Critical Reviews, 22, 131–156. https://doi.org/10.1080/10937404.2019.1661588 Campbell, J. L., Hopman, T. L., Maxwell, J. A., & Nejedly, Z. (2000). The Guelph PIXE software package III: Alternative proton database. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. https://doi.org/10.1016/S0168-583X(00)00156-7 Cardano, M., Buscemi, G., & Zannini, L. (2022). Sex disparities in DNA damage response pathways: Novel determinants in cancer formation and therapy. Science, 25, 103875. https://doi.org/10.1016/j.isci.2022.103875 Chen, J., Jiao, F., Zhang, L., Yao, H., & Ninomiya, Y. (2013). Elucidating the mechanism of Cr(VI) formation upon the interaction with metal oxides during coal oxy-fuel combustion. Journal of Hazardous Materials, 261, 260–268. https://doi.org/10.1016/j.jhazmat.2013.07.023 Chen, P., Bornhorst, J., Diana Neely, M., & Avila, D. S. (2018). Mechanisms and disease pathogenesis underlying metal-induced oxidative stress. Oxidative Medicine and Cellular Longevity, 2018, 1–3. https://doi.org/10.1155/2018/7612172 Coppedè, F., & Migliore, L. (2015). DNA damage in neurodegenerative diseases. Mutat. Res. Mol. Mech. Mutagen., 776, 84–97. https://doi.org/10.1016/j.mrfmmm.2014.11.010 Darquenne, C. (2020). Deposition mechanisms. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 33, 181–185. https://doi.org/10.1089/jamp.2020.29029.cd Darsow, U., Fedorov, M., Schwegler, U., Twardella, D., Schaller, K.-H., Habernegg, R., Fromme, H., Ring, J., & Behrendt, H. (2012). Influence of dietary factors, age and nickel contact dermatitis on nickel excretion. Contact Dermatitis, 67, 351–358. https://doi.org/10.1111/j.1600-0536.2012.02153.x De Rosa, M., Johnson, S. A., & Opresko, P. L. (2021). Roles for the 8-oxoguanine DNA repair system in protecting telomeres from oxidative stress. Frontiers in Cell and Developmental Biology, 9, 758402. https://doi.org/10.3389/fcell.2021.758402 de Souza, M. R., Kahl, V. F. S., Rohr, P., Kvitko, K., Cappetta, M., Lopes, W. M., & da Silva, J. (2018). Shorter telomere length and DNA hypermethylation in peripheral blood cells of coal workers. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 836, 36–41. https://doi.org/10.1016/j.mrgentox.2018.03.009 Debastiani, R., Iochims Dos Santos, C. E., & Ferraz Dias, J. (2021). Elemental characterization of sparkling wine and cork stoppers. Curr. Res. Food Sci., 4, 670–678. https://doi.org/10.1016/j.crfs.2021.09.006 Espitia-Pérez, L., da Silva, J., Brango, H., Espitia-Pérez, P., Pastor-Sierra, K., Salcedo-Arteaga, S., de Souza, C. T., Dias, J. F., Hoyos-Giraldo, L. S., Gómez-Pérez, M., Salcedo-Restrepo, D., & Henriques, J. A. P. (2018a). Genetic damage in environmentally exposed populations to open-pit coal mining residues: Analysis of buccal micronucleus cytome (BMN-cyt) assay and alkaline, Endo III and FPG high-throughput comet assay. Mutat. Res. Toxicol. Environ. Mutagen., 836, 24–35. https://doi.org/10.1016/j.mrgentox.2018.06.002 Espitia-Pérez, L., da Silva, J., Espitia-Pérez, P., Brango, H., Salcedo-Arteaga, S., Hoyos-Giraldo, L. S., de Souza, C. T., Dias, J. F., Agudelo-Castañeda, D., Valdés Toscano, A., Gómez-Pérez, M., & Henriques, J. A. P. (2018b). Cytogenetic instability in populations with residential proximity to open-pit coal mine in Northern Colombia in relation to PM10 and PM2.5 levels. Ecotoxicology and Environmental Safety, 148, 453–466. https://doi.org/10.1016/j.ecoenv.2017.10.044 Fischer, K. E., & Riddle, N. C. (2018). Sex differences in aging: genomic instability. The Journals of Gerontology. Series A, 73, 166–174. https://doi.org/10.1093/gerona/glx105 Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020). Nickel: human health and environmental toxicology. International Journal of Environmental Research and Public Health, 17, 679. https://doi.org/10.3390/ijerph17030679 Goedtke, L., Sprenger, H., Hofmann, U., Schmidt, F. F., Hammer, H. S., Zanger, U. M., Poetz, O., Seidel, A., Braeuning, A., & Hessel-Pras, S. (2020). Polycyclic aromatic hydrocarbons activate the aryl hydrocarbon receptor and the constitutive androstane receptor to regulate xenobiotic metabolism in human liver cells. International Journal of Molecular Sciences, 22, 372. https://doi.org/10.3390/ijms22010372 Gopinathan, P., Jha, M., Singh, A. K., Mahato, A., Subramani, T., Singh, P. K., & Singh, V. (2022a). Geochemical characteristics, origin and forms of sulphur distribution in the Talcher coalfield India. Fuel, 316, 123376. https://doi.org/10.1016/j.fuel.2022.123376 Gopinathan, P., Santosh, M. S., Dileepkumar, V. G., Subramani, T., Reddy, R., Masto, R. E., & Maity, S. (2022b). Geochemical, mineralogical and toxicological characteristics of coal fly ash and its environmental impacts. Chemosphere, 307, 135710. https://doi.org/10.1016/j.chemosphere.2022.135710 Grindel, A., Guggenberger, B., Eichberger, L., Pöppelmeyer, C., Gschaider, M., Tosevska, A., Mare, G., Briskey, D., Brath, H., & Wagner, K.-H. (2016). Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2. PLoS ONE, 11, e0162082. https://doi.org/10.1371/journal.pone.0162082 Guan, X., Fu, W., Wei, W., Li, G., Wu, X., Bai, Y., Feng, Y., Meng, H., Li, H., Li, M., Fu, M., Zhang, X., He, M., & Guo, H. (2020). Mediation of the association between polycyclic aromatic hydrocarbons exposure and telomere attrition by oxidative stress: A prospective cohort study. Journal of Hazardous Materials, 399, 123058. https://doi.org/10.1016/j.jhazmat.2020.123058 Heaphy, C. M., Joshu, C. E., Barber, J. R., Davis, C., Lu, J., Zarinshenas, R., Giovannucci, E., Mucci, L. A., Stampfer, M. J., Han, M., De Marzo, A. M., Lotan, T. L., Platz, E. A., & Meeker, A. K. (2022). The prostate tissue-based telomere biomarker as a prognostic tool for metastasis and death from prostate cancer after prostatectomy. The Journal of Pathology: Clinical Research, 8, 481–491. https://doi.org/10.1002/cjp2.288 Hendryx, M., Zullig, K. J., & Luo, J. (2020). Impacts of coal use on health. Annual Review of Public Health, 41, 397–415. https://doi.org/10.1146/annurev-publhealth-040119-094104 Hu, L., Wang, Z., Carmone, C., Keijer, J., & Zhang, D. (2021). Role of oxidative DNA damage and repair in atrial fibrillation and ischemic heart disease. International Journal of Molecular Sciences, 22, 3838. https://doi.org/10.3390/ijms22083838 IARC (2010). Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum, 92:1–853. Available from: http://publications.iarc.fr/110 Islam, A. RMd. T., & Jion, Most.M.M.F., Jannat, J.N., Varol, M., Islam, Md.A., Khan, R., Idris, A.M., Malafaia, G., Habib, Md.A.,. (2023). Perception and legacy of soil chromium and lead contamination in an operational small-scale coal mining community. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-023-01571-2 Israr, M. A., Abbas, Q., Haq, S. U., & Nadeem, A. (2022). Analysis of carbon contents and heavy metals in coal samples using calibration-free LIBS technique. Journal of Spectroscopy, 2022, 1–11. https://doi.org/10.1155/2022/3328477 Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7, 60–72. https://doi.org/10.2478/intox-2014-0009 Jakob, M., Steckel, J. C., Jotzo, F., Sovacool, B. K., Cornelsen, L., Chandra, R., Edenhofer, O., Holden, C., Löschel, A., Nace, T., Robins, N., Suedekum, J., & Urpelainen, J. (2020). The future of coal in a carbon-constrained climate. Nature Climate Change, 10, 704–707. https://doi.org/10.1038/s41558-020-0866-1 Jenkins, W. D., Christian, W. J., Mueller, G., & Robbins, K. T. (2013). Population Cancer Risks Associated with Coal Mining: A Systematic Review. PLoS ONE, 8, e71312. https://doi.org/10.1371/journal.pone.0071312 Jomova, K., & Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology, 283, 65–87. https://doi.org/10.1016/j.tox.2011.03.001 Kahl, V. F. S., Simon, D., Salvador, M., dos Branco, C., & S., Dias, J.F., da Silva, F.R., de Souza, C.T., da Silva, J.,. (2016). Telomere measurement in individuals occupationally exposed to pesticide mixtures in tobacco fields: Telomere length is shortened in tobacco growers. Environmental and Molecular Mutagenesis, 57, 74–84. https://doi.org/10.1002/em.21984 Kamanzi, C., Becker, M., Jacobs, M., Konečný, P., Von Holdt, J., & Broadhurst, J. (2023). The impact of coal mine dust characteristics on pathways to respiratory harm: Investigating the pneumoconiotic potency of coals. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-023-01583-y Klaunig, J. E., Kamendulis, L. M., & Hocevar, B. A. (2010). Oxidative stress and oxidative damage in carcinogenesis. Toxicologic Pathology, 38, 96–109. https://doi.org/10.1177/0192623309356453 Ko, J.-L., Cheng, Y.-J., Liu, G.-C., Hsin, I.-L., & Chen, H.-L. (2017). The association of occupational metals exposure and oxidative damage, telomere shortening in fitness equipments manufacturing workers. Industrial Health, 55, 345–353. https://doi.org/10.2486/indhealth.2016-0148 Kravchenko, J., Lyerly, H.K. (2018). The Impact of Coal-Powered Electrical Plants and Coal Ash Impoundments on the Health of Residential Communities. N. C. Med. J. 79, 289–300. https://doi.org/10.18043/ncm.79.5.289 Kuchařová, M., Hronek, M., Rybáková, K., Zadák, Z., Štětina, R., Josková, V., Patková, A. (2019). Comet assay and its use for evaluating oxidative DNA damage in some pathological states. Physiological Research. https://doi.org/10.33549/physiolres.933901 Kvitko, K., Bandinelli, E., Henriques, J. A. P., Heuser, V. D., Rohr, P., da Silva, F. R., Schneider, N. B., Fernandes, S., Ancines, C., & da Silva, J. (2012). Susceptibility to DNA damage in workers occupationally exposed to pesticides, to tannery chemicals and to coal dust during mining. Genetics and Molecular Biology, 35, 1060–1068. https://doi.org/10.1590/S1415-47572012000600022 León-Mejía, G., Espitia-Pérez, L., Hoyos-Giraldo, L. S., Da Silva, J., Hartmann, A., Henriques, J. A. P., & Quintana, M. (2011). Assessment of DNA damage in coal open-cast mining workers using the cytokinesis-blocked micronucleus test and the comet assay. Science of the Total Environment, 409, 686–691. https://doi.org/10.1016/j.scitotenv.2010.10.049 León-Mejía, G., Quintana, M., Debastiani, R., Dias, J., Espitia-Pérez, L., Hartmann, A., Henriques, J. A. P., & Da Silva, J. (2014). Genetic damage in coal miners evaluated by buccal micronucleus cytome assay. Ecotoxicology and Environmental Safety, 107, 133–139. https://doi.org/10.1016/j.ecoenv.2014.05.023 León-Mejía, G., Rueda, R. A., Pérez Pérez, J., Miranda-Guevara, A., Moreno, O. F., Quintana-Sosa, M., Trindade, C., De Moya, Y. S., Ruiz-Benitez, M., Lemus, Y. B., Rodríguez, I. L., Oliveros-Ortiz, L., Acosta-Hoyos, A., Pacheco-Londoño, L. C., Muñoz, A., Hernández-Rivera, S. P., Olívero-Verbel, J., da Silva, J., & Henriques, J. A. P. (2023a). Analysis of the cytotoxic and genotoxic effects in a population chronically exposed to coal mining residues. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-26136-9 León-Mejía, G., Silva, L. F. O., Civeira, M. S., Oliveira, M. L. S., Machado, M., Villela, I. V., Hartmann, A., Premoli, S., Corrêa, D. S., Da Silva, J., & Henriques, J. A. P. (2016). Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells. Environmental Science and Pollution Research, 23, 24019–24031. https://doi.org/10.1007/s11356-016-7623-z León-Mejía, G., Vargas, J. E., Quintana-Sosa, M., Rueda, R. A., Pérez, J. P., Miranda-Guevara, A., Moreno, O. F., Trindade, C., Acosta-Hoyos, A., Dias, J., da Silva, J., & Pêgas Henriques, J. A. (2023b). Exposure to coal mining can lead to imbalanced levels of inorganic elements and DNA damage in individuals living near open-pit mining sites. Environmental Research. https://doi.org/10.1016/j.envres.2023.115773 Li, H., Hedmer, M., Wojdacz, T., Hossain, M. B., Lindh, C. H., Tinnerberg, H., Albin, M., & Broberg, K. (2015). Oxidative stress, telomere shortening, and DNA methylation in relation to low-to-moderate occupational exposure to welding fumes. Environmental and Molecular Mutagenesis, 56, 684–693. https://doi.org/10.1002/em.21958 Lin, N., Mu, X., Wang, G., Ren, Y., Su, S., Li, Z., Wang, B., & Tao, S. (2017). Accumulative effects of indoor air pollution exposure on leukocyte telomere length among non-smokers. Environmental Pollution, 227, 1–7. https://doi.org/10.1016/j.envpol.2017.04.054 Linstrom, P.J. & Mallard, W.G. (2022). NIST chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, https://doi.org/10.18434/T4D303 Liu, G., Niu, Z., Van Niekerk, D., Xue, J. & Zheng, L. (2008). Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: emissions, analysis, and toxicology. In Whitacre, D.M. (Ed.) Reviews of environmental contamination and toxicology, reviews of environmental contamination and toxicology. Springer, New York (pp. 1–28). https://doi.org/10.1007/978-0-387-71724-1_1 Liu, T., & Liu, S. (2020). The impacts of coal dust on miners’ health: A review. Environmental Research, 190, 109849. https://doi.org/10.1016/j.envres.2020.109849 Lum, J.T.-S., Chan, Y.-N., & Leung, K.S.-Y. (2021). Current applications and future perspectives on elemental analysis of non-invasive samples for human biomonitoring. Talanta, 234, 122683. https://doi.org/10.1016/j.talanta.2021.122683 Luo, K., Carmella, S. G., Zhao, Y., Tang, M. K., & Hecht, S. S. (2020). Identification and quantification of phenanthrene ortho-quinones in human urine and their association with lipid peroxidation. Environmental Pollution, 266, 115342. https://doi.org/10.1016/j.envpol.2020.115342 Ma, H., Zhou, Z., Wei, S., Liu, Z., Pooley, K. A., Dunning, A. M., Svenson, U., Roos, G., Hosgood, H. D., Shen, M., & Wei, Q. (2011). Shortened telomere length is associated with increased risk of cancer: A meta-analysis. PLoS ONE, 6, e20466. https://doi.org/10.1371/journal.pone.0020466 Mallah, M. A., Changxing, L., Mallah, M. A., Noreen, S., Liu, Y., Saeed, M., Xi, H., Ahmed, B., Feng, F., Mirjat, A. A., Wang, W., Jabar, A., Naveed, M., Li, J.-H., & Zhang, Q. (2022). Polycyclic aromatic hydrocarbon and its effects on human health: An overeview. Chemosphere, 296, 133948. https://doi.org/10.1016/j.chemosphere.2022.133948 Moorthy, B., Chu, C., & Carlin, D. J. (2015). Polycyclic aromatic hydrocarbons: From metabolism to lung cancer. Toxicological Sciences, 145, 5–15. https://doi.org/10.1093/toxsci/kfv040 Muruzabal, D., Collins, A., & Azqueta, A. (2021). The enzyme-modified comet assay: Past, present and future. Food and Chemical Toxicology, 147, 111865. https://doi.org/10.1016/j.fct.2020.111865 O’Callaghan, N. J., & Fenech, M. (2011). A quantitative PCR method for measuring absolute telomere length. Biological Procedures Online, 13, 3. https://doi.org/10.1186/1480-9222-13-3 Panda, L., & Dash, S. (2020). Characterization and utilization of coal fly ash: A review. Emerging Materials Research, 9, 921–934. https://doi.org/10.1680/jemmr.18.00097 Qian, Y., Yuan, K., Wang, J., Xu, Z., Liang, H., & Tie, C. (2023). Parent and alkylated polycyclic aromatic hydrocarbon emissions from coal seam fire at Wuda, Inner Mongolia, China: Characteristics, spatial distribution, sources, and health risk assessment. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-023-01476-0 Quintana-Sosa, M., León-Mejía, G., Luna-Carrascal, J., & De moya, Y.S., Rodríguez, I.L., Acosta-Hoyos, A., Anaya-Romero, M., Trindade, C., Narváez, D.M., Restrepo, H.G. de, Dias, J., Niekraszewicz, L., Garcia, A.L.H., Rohr, P., da Silva, J. & Henriques, J.A.P. (2021). Cytokinesis-block micronucleus cytome (CBMN-CYT) assay biomarkers and telomere length analysis in relation to inorganic elements in individuals exposed to welding fumes. Ecotoxicology and Environmental Safety, 212, 111935. https://doi.org/10.1016/j.ecoenv.2021.111935 Ren, M., Zheng, L., Hu, J., Chen, X., Zhang, Y., Dong, X., Wei, X., & Cheng, H. (2022). Characterization of polycyclic aromatic hydrocarbons in soil in a coal mining area, East China: Spatial distribution, sources, and carcinogenic risk assessment. Frontiers in Earth Science, 10, 1035792. https://doi.org/10.3389/feart.2022.1035792 Rohr, P., Kvitko, K., da Silva, F. R., Menezes, A. P. S., Porto, C., Sarmento, M., Decker, N., Reyes, J. M., da Allgayer, M., C., Furtado, T.C., Salvador, M., Branco, C. & da Silva, J. (2013). Genetic and oxidative damage of peripheral blood lymphocytes in workers with occupational exposure to coal. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 758, 23–28. https://doi.org/10.1016/j.mrgentox.2013.08.006 Romana, H. K., Singh, R. P., Dubey, C. S., & Shukla, D. P. (2022). Analysis of air and soil quality around thermal power plants and coal mines of Singrauli Region, India. International Journal of Environmental Research and Public Health, 19, 11560. https://doi.org/10.3390/ijerph191811560 Schraufnagel, D. E. (2020). The health effects of ultrafine particles. Experimental & Molecular Medicine, 52, 311–317. https://doi.org/10.1038/s12276-020-0403-3 Shekarian, Y., Rahimi, E., Rezaee, M., Su, W.-C., & Roghanchi, P. (2021). Respirable coal mine dust: A review of respiratory deposition, regulations, and characterization. Minerals, 11, 696. https://doi.org/10.3390/min11070696 Shubeita, S. M., dos Santos, C. E. I., Filho, J. L. R., Giulian, R., Meira, L., Silva, P. R., Amaral, L., Dias, J. F., & Yoneama, M. L. (2005). Residual activity induced by ion bombardment on insulating samples. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 240, 297–302. https://doi.org/10.1016/j.nimb.2005.06.133 Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175, 184–191. https://doi.org/10.1016/0014-4827(88)90265-0 Sinitsky, MYu., Minina, V. I., Gafarov, N. I., Asanov, M. A., Larionov, A. V., Ponasenko, A. V., Volobaev, V. P., & Druzhinin, V. G. (2016). Assessment of DNA damage in underground coal miners using the cytokinesis-block micronucleus assay in peripheral blood lymphocytes. Mutagenesis, 31, 669–675. https://doi.org/10.1093/mutage/gew038 Song, Y., Southam, K., Beamish, B. B., & Zosky, G. R. (2022). Effects of chemical composition on the lung cell response to coal particles: Implications for coal workers’ pneumoconiosis. Respirology, 27, 447–454. https://doi.org/10.1111/resp.14246 Souliotis, V. L., Vlachogiannis, N. I., Pappa, M., Argyriou, A., Ntouros, P. A., & Sfikakis, P. P. (2019). DNA damage response and oxidative stress in systemic autoimmunity. International Journal of Molecular Sciences, 21, 55. https://doi.org/10.3390/ijms21010055 de Souza, M. R., Hilário Garcia, A. L., Dalberto, D., Martins, G., Picinini, J., de Souza, G. M. S., Chytry, P., Dias, J. F., Bobermin, L. D., Quincozes-Santos, A., & da Silva, J. (2021). Environmental exposure to mineral coal and by-products: Influence on human health and genomic instability. Environmental Pollution, 287, 117346. https://doi.org/10.1016/j.envpol.2021.117346 Srinivas, U. S., Tan, B. W. Q., Vellayappan, B. A., & Jeyasekharan, A. D. (2019). ROS and the DNA damage response in cancer. Redox Biology, 25, 101084. https://doi.org/10.1016/j.redox.2018.101084 Sun, B., Wang, Y., Kota, K., Shi, Y., Motlak, S., Makambi, K., Loffredo, C. A., Shields, P. G., Yang, Q., Harris, C. C., & Zheng, Y.-L. (2015). Telomere length variation: A potential new telomere biomarker for lung cancer risk. Lung Cancer, 88, 297–303. https://doi.org/10.1016/j.lungcan.2015.03.011 Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J.-C., & Sasaki, Y. F. (2000). Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis, 35, 206–221. https://doi.org/10.1002/(SICI)1098-2280(2000)35:3%3c206::AID-EM8%3e3.0.CO;2-J Torres-Ávila, J. F., Espitia-Pérez, L., Bonatto, D., da Silva, F. R., de Oliveira, I. M., Silva, L. F. O., Corrêa, D. S., Dias, J. F., da Silva, J., & Henriques, J. A. P. (2020). Systems chemo-biology analysis of DNA damage response and cell cycle effects induced by coal exposure. Genetics and Molecular Biology, 43, e20190134. https://doi.org/10.1590/1678-4685-gmb-2019-0134 Tsay, J. J., Tchou-Wong, K.-M., Greenberg, A. K., Pass, H., & Rom, W. N. (2013). Aryl hydrocarbon receptor and lung cancer. Anticancer Research, 33, 1247–1256. Ullah, I., Zahid, M., Jawad, M., & Arsh, A. (2021). Assessment of DNA damage and oxidative stress among traffic conductors and coal miners. Pakistan Journal of Medical Sciences. https://doi.org/10.12669/pjms.37.2.2848 US EPA Method 3540C Soxhlet Extraction (1996). https://www.epa.gov/sites/default/files/2015-12/documents/3540c.pdf Vogel, C. F. A., Van Winkle, L. S., Esser, C., & Haarmann-Stemmann, T. (2020). The aryl hydrocarbon receptor as a target of environmental stressors – Implications for pollution mediated stress and inflammatory responses. Redox Biology, 34, 101530. https://doi.org/10.1016/j.redox.2020.101530 Witkowska, D., Słowik, J., & Chilicka, K. (2021). Heavy metals and human health: Possible exposure pathways and the competition for protein binding sites. Molecules, 26, 6060. https://doi.org/10.3390/molecules26196060