The cycle space of a 3-connected locally finite graph is generated by its finite and infinite peripheral circuits

Journal of Combinatorial Theory, Series B - Tập 92 - Trang 235-256 - 2004
Henning Bruhn1
1AG Geometrie und Diskrete Mathematik, Mathematisches Seminar, Universität Hamburg, Fachbereich Mathematik, Bundesstraße 55, Raum 229, DE-20146 Hamburg, Germany

Tài liệu tham khảo

J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan Press, London 1976. Bonnington, 2003, Graphs embedded in the plane with finitely many accumulation points, J. Graph. Theory, 44, 132, 10.1002/jgt.10133 R. Diestel, The cycle space of an infinite graph, Comb., Probab. Comput., to appear. R. Diestel, Graph Theory, 2nd Edition, Springer, Berlin, 2000, Electronic edition available at: http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/download.html Diestel, 2004, On infinite cycles I, Combinatorica, 24, 69, 10.1007/s00493-004-0005-z Diestel, 2004, On infinite cycles II, Combinatorica, 24, 91, 10.1007/s00493-004-0005-z R. Diestel, D. Kühn, Topological paths, cycles and spanning trees in infinite graphs, Europ. J. Combin., to appear. Halin, 2000, Miscellaneous problems on infinite graphs, J. Graph Theory, 35, 128, 10.1002/1097-0118(200010)35:2<128::AID-JGT6>3.0.CO;2-6 Hall, 1955 Richter, 2002, 3-connected planar spaces uniquely embed in the sphere, Trans. Amer. Math. Soc, 354, 4585, 10.1090/S0002-9947-02-03052-0 Thomassen, 1980, Planarity and duality of finite and infinite graphs, J. Combin. Theory (Series B), 29, 244, 10.1016/0095-8956(80)90083-0 Tutte, 1963, How to draw a graph, Proc. London Math. Soc, 13, 743, 10.1112/plms/s3-13.1.743