The current scope and stand of carbon capture storage and utilization ∼ A comprehensive review

Ayush Bhavsar1, Deepika Hingar1, Samyak Ostwal1, Ishan Thakkar1, Sandeepsinh Jadeja1, Manan Shah1
1Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, Gujarat, India

Tài liệu tham khảo

Baena-Moreno, 2019, Carbon capture and utilization technologies: a literature review and recent advances, Energy Sources, Part A Recover. Util. Environ. Eff., 41, 1403 Hatzigeorgiou, 2010, Energy CO2 emissions for 1990-2020: a decomposition analysis for EU-25 and Greece, Energy Sources, Part A Recover. Util. Environ. Eff., 32, 1908 D'Alessandro, 2010, Carbon dioxide capture: prospects for new materials, Angew. Chem., Int. Ed., 49, 6058, 10.1002/anie.201000431 Bobicki, 2012, Carbon capture and storage using alkaline industrial wastes, Prog. Energy Combust. Sci., 38, 302, 10.1016/j.pecs.2011.11.002 Theo, 2016, Review of pre-combustion capture and ionic liquid in carbon capture and storage, Appl. Energy, 183, 1633, 10.1016/j.apenergy.2016.09.103 Rubin, 2012, The outlook for improved carbon capture technology, Prog. Energy Combust. Sci., 38, 630, 10.1016/j.pecs.2012.03.003 Watson, 2014, Resolving or managing uncertainties for carbon capture and storage: lessons from historical analogues, Technol. Forecast. Soc. Change, 81, 192, 10.1016/j.techfore.2013.04.016 1983 Smit, 2014, The grand challenges in carbon capture, utilization, and storage, Front. Energy Res., 2, 2013 Zhang, 2020, Optimization-based approach for CO2 utilization in carbon capture, utilization and storage supply chain, Comput. Chem. Eng., 139, 10.1016/j.compchemeng.2020.106885 Styring, 2011 Sreenivasulu, 2017, Thermokinetic investigations of high temperature carbon capture using a coal fly ash doped sorbent, Energy Fuel., 31, 6320, 10.1021/acs.energyfuels.7b00629 Roussanaly, 2021, Towards improved cost evaluation of Carbon Capture and Storage from industry, Int. J. Greenh. Gas Control, 106, 10.1016/j.ijggc.2021.103263 Kern, 2016, vol. 102 Bui, 2018, Carbon capture and storage (CCS): the way forward, Energy Environ. Sci., 11, 1062, 10.1039/C7EE02342A Alcalde, 2018, Estimating geological CO2 storage security to deliver on climate mitigation, Nat. Commun., 9, 10.1038/s41467-018-04423-1 Cuéllar-Franca, 2015, Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts, J. CO2 Util., 9, 82, 10.1016/j.jcou.2014.12.001 Bilgen, 2016, Pollution control techniques and technologies for cleaner coal, Energy Sources, Part A Recover. Util. Environ. Eff., 38, 3308 Mayssara A, 2014 2009, Technology roadmap: carbon capture and storage, Current, 1 Roadmap, 2006, Encycl. Prod. Manuf. Manag., 781 Zhang, 2019 Al-Mamoori, 2017, Carbon capture and utilization update, Energy Technol., 5, 834, 10.1002/ente.201600747 Mualim, 2021, Pinch-based approach graphical targeting for multi-period of carbon capture storage and utilization, 21 L. Plasseraud, “Carbon Dioxide as Chemical Feedstock. Edited by Michele Aresta.,” ChemSusChem, vol. vol. 3, no. 5, pp. 631–632, 2010, doi: 10.1002/cssc.201000097. Markewitz, 2012, Worldwide innovations in the development of carbon capture technologies and the utilization of CO2, Energy Environ. Sci., 5, 7281, 10.1039/c2ee03403d Dong, 2019, Co2 utilization in the ironmaking and steelmaking process, Metals, 9, 1, 10.3390/met9030273 2012 Recovery, 1989 Boot-Handford, 2014, Carbon capture and storage update, Energy Environ. Sci., 7, 130, 10.1039/C3EE42350F Leggett, 2011, An overview of greenhouse gas (GHG) control policies in various countries, Ctries. Clim. Policies Paths to Chang., 1 Kuld, 2014, Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst, Angew. Chem., 126, 6051, 10.1002/ange.201311073 MacDowell, 2010, An overview of CO2 capture technologies, Energy Environ. Sci., 3, 1645, 10.1039/c004106h Dimitriou, 2015, Carbon dioxide utilisation for production of transport fuels: process and economic analysis, Energy Environ. Sci., 8, 1775, 10.1039/C4EE04117H Sanna, 2014, A review of mineral carbonation technologies to sequester CO2, Chem. Soc. Rev., 43, 8049, 10.1039/C4CS00035H Pan, 2015, An innovative approach to integrated carbon mineralization and waste utilization: a review, Aerosol Air Qual. Res., 15, 1072, 10.4209/aaqr.2014.10.0240 Bijl, 2016, Long-term water demand for electricity, industry and households, Environ. Sci. Pol., 55, 75, 10.1016/j.envsci.2015.09.005 McCutcheon, 2006, 1 Marshall, 2016, Disordering fantasies of coal and technology: carbon capture and storage in Australia, Energy Pol., 99, 288, 10.1016/j.enpol.2016.05.044 Ciferno, 2012, US DOE National Energy Technology Laboratory's post combustion carbon capture R&D program, vol. 2, 965 Omae, 2012, Coord. Chem. Rev., 256, 1384, 10.1016/j.ccr.2012.03.017 Vanden Bussche, 1996, J. Catal., 161, 1, 10.1006/jcat.1996.0156 Putra, 2017, Technical and economical evaluation of carbon dioxide capture and conversion to methanol process, vol. 1840 Nykvist, 2013, Ten times more difficult: quantifying the carbon capture and storage challenge, Energy Pol., 55, 683, 10.1016/j.enpol.2012.12.026 Mac Dowell, 2017, The role of CO2 capture and utilization in mitigating climate change, Nat. Clim. Change, 7, 243, 10.1038/nclimate3231 Smalley, 2005, Future global energy prosperity: the terawatt challenge, MRS Bull., 30, 412, 10.1557/mrs2005.124 Stephens, 2011, Characterizing the international carbon capture and storage community, Global Environ. Change, 21, 379, 10.1016/j.gloenvcha.2011.01.008 Friedmann, 2006, The low cost of geological assessment for underground CO2 storage: policy and economic implications, Energy Convers. Manag., 47, 1894, 10.1016/j.enconman.2005.09.006 2010, 233 Mualim, 2021, Evaluation of multiple time carbon capture and storage network with capital carbon trade-off, J. Clean. Prod., 291, 10.1016/j.jclepro.2020.125710 Licht, 2013, STEP carbon capture - the barium advantage, J. CO2 Util., 2, 58, 10.1016/j.jcou.2013.03.006 Kanniche, 2010, Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture, Appl. Therm. Eng., 30, 53, 10.1016/j.applthermaleng.2009.05.005 Yan, 2019, Carbon capture, utilization and storage (CCUS), Appl. Energy, 235, 1289, 10.1016/j.apenergy.2018.11.019 Yan, 2015, Carbon capture and storage (CCS), Appl. Energy, 148 Bachu, 2008, CO2 storage in geological media: role, means, status and barriers to deployment, Prog. Energy Combust. Sci., 34, 254, 10.1016/j.pecs.2007.10.001 Johnsson, 2010, Stakeholder attitudes on carbon capture and storage-an international comparison, Int. J. Greenh. Gas Control, 4, 410, 10.1016/j.ijggc.2009.09.006 Zhang, 2018, Effectiveness of amino acid salt solutions in capturing CO2: a review, Renew. Sustain. Energy Rev., 98, 179, 10.1016/j.rser.2018.09.019 Zhang, 2018, Progress in enhancement of CO2 absorption by nanofluids: a mini review of mechanisms and current status, Renew. Energy, 118, 527, 10.1016/j.renene.2017.11.031 Gabrielli, 2020, The role of carbon capture and utilization, carbon capture and storage, and biomass to enable a net-zero-CO2 emissions chemical industry, Ind. Eng. Chem. Res., 59, 7033, 10.1021/acs.iecr.9b06579 2005 Handogo, 2018, Carbon capture and storage system using pinch design method, MATEC Web of Conference, 156, 10.1051/matecconf/201815603005 Li, 2008, Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X, Adsorption, 14, 415, 10.1007/s10450-007-9100-y Hunt, 2010, Generation, capture, and utilization of industrial carbon dioxide, ChemSusChem, 3, 306, 10.1002/cssc.200900169 Wang, 2011, CO2 capture by solid adsorbents and their applications: current status and new trends, Energy Environ. Sci., 4, 42, 10.1039/C0EE00064G Lam, 2012, Current status and challenges on microalgae-based carbon capture, Int. J. Greenh. Gas Control, 10, 456, 10.1016/j.ijggc.2012.07.010 Lin, 2017, Metal-organic frameworks for carbon dioxide capture and methane storage, Adv. Energy Mater., 7, 10.1002/aenm.201601296 Trickett, 2017, The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion, Nat. Rev. Mater., 2, 1, 10.1038/natrevmats.2017.45 Nandasiri, 2016, Adsorption, separation, and catalytic properties of densified metal-organic frameworks, Coord. Chem. Rev., 311, 38, 10.1016/j.ccr.2015.12.004 Kittel, 2009, Corrosion in MEA units for CO2 capture: pilot plant studies, Energy Proc., 1, 791, 10.1016/j.egypro.2009.01.105 Cole, 2011, Corrosion of pipelines used for CO 2 transport in CCS: is it a real problem?, Int. J. Greenh. Gas Control, 5, 749, 10.1016/j.ijggc.2011.05.010 Pires, 2011, Recent developments on carbon capture and storage: an overview, Chem. Eng. Res. Des., 89, 1446, 10.1016/j.cherd.2011.01.028 Ziobrowski, 2016, Carbon dioxide absorption in a packed column using imidazolium based ionic liquids and MEA solution, Int. J. Greenh. Gas Control, 47, 8, 10.1016/j.ijggc.2016.01.018 Scholes, 2009, The effect of condensable minor components on the gas separation performance of polymeric membranes for carbon dioxide capture, Energy Proc., 1, 311, 10.1016/j.egypro.2009.01.043 Tuinier, 2010, Cryogenic CO2 capture using dynamically operated packed beds, Chem. Eng. Sci., 65, 114, 10.1016/j.ces.2009.01.055 Najera, 2011, Carbon capture and utilization via chemical looping dry reforming, Chem. Eng. Res. Des., 89, 1533, 10.1016/j.cherd.2010.12.017 Wei, 2021, Decarbonizing the coal-fired power sector in China via carbon capture, geological utilization, and storage technology, Environ. Sci. Technol., 55, 13164 T. O. Prescription, “Issue Brief,” Mathematica, no. vol. 452, pp. 2003–2006, 2005. Hirst, 2018, 119 Wei, 2021, A strategic framework for commercialization of carbon capture, geological utilization, and storage technology in China, Int. J. Greenh. Gas Control, 110 Linzenich, 2019, Uncovering attitudes towards carbon capture storage and utilization technologies in Germany: insights into affective-cognitive evaluations of benefits and risks, Energy Res. Social Sci., 48, 205, 10.1016/j.erss.2018.09.017 van Os, 2018, Accelerating low carbon industrial growth through carbon capture, utilization and storage (CCUS), Greenh. Gases Sci. Technol., 8, 994, 10.1002/ghg.1828 Marocco Stuardi, 2019, Integrated CO 2 capture and utilization: a priority research direction, Curr. Opin. Green Sustain. Chem., 16, 71, 10.1016/j.cogsc.2019.02.003 Zhang, 2020, Energy and environment issues in carbon capture, utilization and storage, Energy Sources, Part A Recover. Util. Environ. Eff., 00, 1 Bruhn, 2016, Separating the debate on CO2 utilisation from carbon capture and storage, Environ. Sci. Pol., 60, 38, 10.1016/j.envsci.2016.03.001 He, 2019, Zero-energy penalty carbon capture and utilization for liquid fuel and power cogeneration with chemical looping combustion, J. Clean. Prod., 235, 34, 10.1016/j.jclepro.2019.06.325 Baena-Moreno, 2020, Novel process for carbon capture and utilization and saline wastes valorization, J. Nat. Gas Sci. Eng., 73, 10.1016/j.jngse.2019.103071 Hargis, 2021, 1 Kang, 2017, Carbon capture and utilization using industrial wastewater under ambient conditions, Chem. Eng. J., 308, 1073, 10.1016/j.cej.2016.09.120 Ravikumar, 2020, The environmental opportunity cost of using renewable energy for carbon capture and utilization for methanol production, Appl. Energy, 279 Skocek, 2020, Carbon Capture and Utilization by mineralization of cement pastes derived from recycled concrete, Sci. Rep., 10, 1, 10.1038/s41598-020-62503-z Zong, 2020, Research of present status and development suggestions regarding the carbon capture, utilization and storage, IOP Conf. Ser. Earth Environ. Sci., 510 Ghiat, 2021, A review of carbon capture and utilisation as a CO2abatement opportunity within the EWF nexus, J. CO2 Util., 45