Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Cấu trúc tinh thể của malyl-CoA lyase ba chức năng Chloroflexus aurantiacus và malyl-CoA lyase hai chức năng Rhodobacter sphaeroides và so sánh với các enzyme thuộc siêu họ CitE-like và malate synthases
Tóm tắt
Malyl-CoA lyase (MCL) là một enzyme phân ly liên kết carbon-carbon đa năng, xúc tác cho sự phân cắt có tính chất hồi phục của các thioester Coenzyme A (CoA) có cấu trúc liên quan. Enzyme này đóng vai trò quan trọng và đa chức năng trong chu trình 3-hydroxypropionate cho sự cố định CO2 tự dưỡng ở Chloroflexus aurantiacus. Một enzyme MCL thứ hai, có phân loại di truyền khác, từ Rhodobacter sphaeroides, tham gia vào con đường ethylmalonyl-CoA để đồng hóa acetate. Cả hai enzyme MCL đều thuộc về siêu họ lớn của các enzyme giống CitE, bao gồm chuỗi β cho lyase citrate (CitE), các thioesterase malyl-CoA và các enzyme khác có chức năng sinh lý chưa biết. Siêu họ enzyme giống CitE cũng có cấu trúc và chuỗi tương tự như các enzyme malate synthases. Tất cả các enzyme khác nhau này đều có các dư lượng xúc tác được bảo tồn rất cao, mặc dù chúng xúc tác cho những phản ứng khác biệt: hình thành và phân cắt liên kết C-C, thủy phân thioester, hoặc cả hai (các malate synthases). Ở đây, chúng tôi báo cáo cấu trúc tinh thể đầu tiên của MCL từ hai nhóm phân loại di truyền khác nhau ở dạng apo và liên kết với substrat. Cả MCL của C. aurantiacus và R. sphaeroides đều có các yếu tố mở rộng trên cấu trúc hình thùng TIM β8/α8 kinh điển và hình thành các tập hợp hexamer. Khi có sự gắn kết của ligand, những thay đổi ở vùng C-đầu của MCL dẫn đến sự đóng kín của vị trí hoạt động, với vùng C-đầu của một monomer tạo thành nắp che và đóng góp các chuỗi bên vào vị trí hoạt động của monomer liền kề. Những đặc điểm đặc trưng của hai nhóm MCL này đã được so sánh với các cấu trúc đã biết của các enzyme thuộc siêu họ CitE-like khác và các malate synthases, cung cấp cái nhìn sâu sắc về những tinh tế cấu trúc nằm dưới tính linh hoạt chức năng của các enzyme này. Mặc dù MCL của C. aurantiacus và R. sphaeroides có cấu trúc chính khác nhau (~37% giống nhau), nhưng cấu trúc bậc ba và bậc bốn của chúng rất tương tự. Có thể giả định rằng sự hình thành liên kết C-C do MCL xúc tác xảy ra như đã đề xuất cho các malate synthases. Tuy nhiên, một so sánh giữa hai cấu trúc MCL với các malate synthases đã biết đã đặt ra câu hỏi tại sao MCL cũng không thể thuỷ phân các liên kết thioester CoA. Kết quả của chúng tôi gợi ý rằng cơ chế phản ứng đã được đề xuất trước đó cho các malate synthases có thể chưa hoàn thiện hoặc không hoàn toàn chính xác. Các nghiên cứu tiếp theo liên quan đến đột biến chỉ định vị trí dựa trên các cấu trúc này có thể cần thiết để giải quyết câu hỏi gây tò mò này.
Từ khóa
#malyl-CoA lyase #enzyme #cấu trúc tinh thể #Chloroflexus aurantiacus #Rhodobacter sphaeroides #CitE-like enzymes #malate synthasesTài liệu tham khảo
Bott M: Anaerobic citrate metabolism and its regulation in enterobacteria. Arch Microbiol 1997, 167(2/3):78–88.
Dimroth P, Eggerer H: Isolation of subunits of citrate lyase and characterization of their function in the enzyme complex. Proc Natl Acad Sci U S A 1975, 72(9):3458–3462. 10.1073/pnas.72.9.3458
Bott M, Dimroth P: Klebsiella pneumoniae genes for citrate lyase and citrate lyase ligase: localization, sequencing, and expression. Mol Microbiol 1994, 14(2):347–356. 10.1111/j.1365-2958.1994.tb01295.x
Schneider K, Dimroth P, Bott M: Biosynthesis of the prosthetic group of citrate lyase. Biochemistry 2000, 39(31):9438–9450. 10.1021/bi000401r
Dimroth P, Dittmar W, Walther G, Eggerer H: The acyl-carrier protein of citrate lyase. Eur J Biochem 1973, 37(2):305–315. 10.1111/j.1432-1033.1973.tb02989.x
Schneider K, Dimroth P, Bott M: Identification of triphosphoribosyl-dephospho-CoA as precursor of the citrate lyase prosthetic group. FEBS Lett 2000, 483(2–3):165–168.
Goulding CW, Bowers PM, Segelke B, Lekin T, Kim CY, Terwilliger TC, Eisenberg D: The structure and computational analysis of Mycobacterium tuberculosis protein CitE suggest a novel enzymatic function. J Mol Biol 2007, 365(2):275–283. 10.1016/j.jmb.2006.09.086
Meister M, Saum S, Alber BE, Fuchs G: L-malyl-coenzyme A/β-methylmalyl-coenzyme A lyase is involved in acetate assimilation of the isocitrate lyase-negative bacterium Rhodobacter capsulatus . J Bacteriol 2005, 187(4):1415–1425. 10.1128/JB.187.4.1415-1425.2005
Herter S, Busch A, Fuchs G: L-Malyl-coenzyme A lyase/β-methylmalyl-coenzyme A lyase from Chloroflexus aurantiacus , a bifunctional enzyme involved in autotrophic CO 2 fixation. J Bacteriol 2002, 184(21):5999–6006. 10.1128/JB.184.21.5999-6006.2002
Zarzycki J, Brecht V, Müller M, Fuchs G: Identifying the missing steps of the autotrophic 3-hydroxypropionate CO 2 fixation cycle in Chloroflexus aurantiacus . Proc Natl Acad Sci U S A 2009, 106(50):21317–21322. 10.1073/pnas.0908356106
Erb TJ, Frerichs-Revermann L, Fuchs G, Alber BE: The apparent malate synthase activity of Rhodobacter sphaeroides is due to two paralogous enzymes, (3 S )-Malyl-coenzyme A (CoA)/β-methylmalyl-CoA lyase and (3 S )-Malyl-CoA thioesterase. J Bacteriol 2010, 192(5):1249–1258. 10.1128/JB.01267-09
Hacking AJ, Quayle JR: Purification and properties of malyl-coenzyme A lyase from Pseudomonas AM1. Biochem J 1974, 139(2):399–405.
Serrano JA, Bonete MJ: Sequencing, phylogenetic and transcriptional analysis of the glyoxylate bypass operon (ace) in the halophilic archaeon Haloferax volcanii . Biochim Biophys Acta 2001, 1520(2):154–162. 10.1016/S0167-4781(01)00263-9
Serrano JA, Camacho M, Bonete MJ: Operation of glyoxylate cycle in halophilic archaea: presence of malate synthase and isocitrate lyase in Haloferax volcanii . FEBS Lett 1998, 434(1–2):13–16.
Khomyakova M, Bükmez Ö, Thomas LK, Erb TJ, Berg IA: A methylaspartate cycle in haloarchaea. Science 2011, 331(6015):334–337. 10.1126/science.1196544
Salem AR, Hacking AJ, Quayle JR: Cleavage of malyl-Coenzyme A into acetyl-Coenzyme A and glyoxylate by Pseudomonas AM1 and other C1-unit-utilizing bacteria. Biochem J 1973, 136(1):89–96.
Hersh LB: Malate Adenosine-Triphosphate Lyase - Separation of Reaction into a Malate Thiokinase and Malyl Coenzyme-a Lyase. J Biol Chem 1973, 248(21):7295–7303.
Anthony C: The Biochemistry of Methylotrophs. London: Academic; 1982.
Friedmann S, Alber BE, Fuchs G: Properties of R-citramalyl-coenzyme A lyase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus . J Bacteriol 2007, 189(7):2906–2914. 10.1128/JB.01620-06
Mattozzi M, Ziesack M, Voges MJ, Silver PA, Way JC: Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli : Toward horizontal transfer of autotrophic growth. Metab Eng 2013, 16: 130–139.
Ducat DC, Silver PA: Improving carbon fixation pathways. Curr Opin Chem Biol 2012, 16(3–4):337–344.
Erb TJ, Berg IA, Brecht V, Müller M, Fuchs G, Alber BE: Synthesis of C 5 -dicarboxylic acids from C 2 -units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway. Proc Natl Acad Sci U S A 2007, 104(25):10631–10636. 10.1073/pnas.0702791104
Bracken CD, Neighbor AM, Lamlenn KK, Thomas GC, Schubert HL, Whitby FG, Howard BR: Crystal structures of a halophilic archaeal malate synthase from Haloferax volcanii and comparisons with isoforms A and G. BMC Struct Biol 2011, 11: 23. 10.1186/1472-6807-11-23
Torres R, Chim N, Sankaran B, Pujol C, Bliska JB, Goulding CW: Structural insights into RipC, a putative citrate lyase β subunit from a Yersinia pestis virulence operon. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012, 68(Pt 1):2–7.
Anstrom DM, Kallio K, Remington SJ: Structure of the Escherichia coli malate synthase G:pyruvate:acetyl-coenzyme A abortive ternary complex at 1.95 A resolution. Protein Sci 2003, 12(9):1822–1832. 10.1110/ps.03174303
Anstrom DM, Remington SJ: The product complex of M. tuberculosis malate synthase revisited. Protein Sci 2006, 15(8):2002–2007. 10.1110/ps.062300206
Howard BR, Endrizzi JA, Remington SJ: Crystal structure of Escherichia coli malate synthase G complexed with magnesium and glyoxylate at 2.0 A resolution: mechanistic implications. Biochemistry 2000, 39(11):3156–3168. 10.1021/bi992519h
Lohman JR, Olson AC, Remington SJ: Atomic resolution structures of Escherichia coli and Bacillus anthracis malate synthase A: comparison with isoform G and implications for structure-based drug discovery. Protein Sci 2008, 17(11):1935–1945. 10.1110/ps.036269.108
Smith CV, Huang CC, Miczak A, Russell DG, Sacchettini JC, Honer zu Bentrup K: Biochemical and structural studies of malate synthase from Mycobacterium tuberculosis . J Biol Chem 2003, 278(3):1735–1743. 10.1074/jbc.M209248200
Quartararo CE, Blanchard JS: Kinetic and chemical mechanism of malate synthase from Mycobacterium tuberculosis . Biochemistry 2011, 50(32):6879–6887. 10.1021/bi2007299
Schmid G, Durchschlag H, Biedermann G, Eggerer H, Jaenicke R: Molecular-Structure of Malate Synthase and Structural Changes Upon Ligand-Binding to Enzyme. Biochem Biophys Res Commun 1974, 58(2):419–426. 10.1016/0006-291X(74)90381-7
Zipper P, Durchschlag H: Small-Angle X-Ray Studies on Malate Synthase from Bakers-Yeast. Biochem Biophys Res Commun 1977, 75(2):394–400. 10.1016/0006-291X(77)91055-5
Beeckmans S, Khan AS, Kanarek L, Vandriessche E: Ligand-Binding on to Maize ( Zea mays ) Malate Synthase - a Structural Study. Biochem J 1994, 303: 413–421.
Cornforth JW, Redmond JW, Eggerer H, Buckel W, Gutschow C: Asymmetric methyl groups, and the mechanism of malate synthase. Nature 1969, 221(5187):1212–1213. 10.1038/2211212a0
Eggerer H, Klette A: On the catalysis principle of malate synthase. Eur J Biochem 1967, 1(4):447–475. 10.1111/j.1432-1033.1967.tb00094.x
Markham GD, Glusker JP, Bock CW: The arrangement of first- and second-sphere water molecules in divalent magnesium complexes: Results from molecular orbital and density functional theory and from structural crystallography. J Phys Chem B 2002, 106(19):5118–5134. 10.1021/jp020078x
Schlippe YVG, Hedstrom L: A twisted base? The role of arginine in enzyme-catalyzed proton abstractions. Arch Biochem Biophys 2005, 433(1):266–278. 10.1016/j.abb.2004.09.018
Dixon GH, Kornberg HL, Lund P: Purification and properties of malate synthetase. Biochim Biophys Acta 1960, 41: 217–233. 10.1016/0006-3002(60)90004-4
Okubo Y, Yang S, Chistoserdova L, Lidstrom ME: Alternative route for glyoxylate consumption during growth on two-carbon compounds by Methylobacterium extorquens AM1. J Bacteriol 2010, 192(7):1813–1823. 10.1128/JB.01166-09
Peyraud R, Kiefer P, Christen P, Massou S, Portais JC, Vorholt JA: Demonstration of the ethylmalonyl-CoA pathway by using 13 C metabolomics. Proc Natl Acad Sci U S A 2009, 106(12):4846–4851. 10.1073/pnas.0810932106
Šmejkalová H, Erb TJ, Fuchs G: Methanol assimilation in Methylobacterium extorquens AM1: demonstration of all enzymes and their regulation. PLoS One 2010, 5(10):e13001. 10.1371/journal.pone.0013001
Tabor S, Richardson CC: A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A 1985, 82(4):1074–1078. 10.1073/pnas.82.4.1074
Zarzycki J, Schlichting A, Strychalsky N, Müller M, Alber BE, Fuchs G: Mesaconyl-coenzyme A hydratase, a new enzyme of two central carbon metabolic pathways in bacteria. J Bacteriol 2008, 190(4):1366–1374. 10.1128/JB.01621-07
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72: 248–254. 10.1016/0003-2697(76)90527-3
Dawson RMC, Elliot DC, Elliot WH, Jones KM: Data for Biochemical Research. 3rd edition. Oxford: Clarendon Press; 1986.
Kabsch W: XDS. Acta Crystallogr D Biol Crystallogr 2010, 66(Pt 2):125–132.
Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, et al.: Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 2011, 67(Pt 4):235–242.
Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, et al.: PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 2010, 66(Pt 2):213–221.
Emsley P, Lohkamp B, Scott WG, Cowtan K: Features and development of Coot. Acta Crystallogr D Biol Crystallogr 2010, 66(Pt 4):486–501.
Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22(13):1658–1659. 10.1093/bioinformatics/btl158
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 2011, 28(10):2731–2739. 10.1093/molbev/msr121
Saitou N, Nei M: The Neighbor-Joining Method - a New Method for Reconstructing Phylogenetic Trees. Mol Biol Evol 1987, 4(4):406–425.
Felsenstein J: Confidence-Limits on Phylogenies - an Approach Using the Bootstrap. Evolution 1985, 39(4):783–791. 10.2307/2408678
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE: UCSF chimera - A visualization system for exploratory research and analysis. J Comput Chem 2004, 25(13):1605–1612. 10.1002/jcc.20084
Krissinel E, Henrick K: Inference of macromolecular assemblies from crystalline state. J Mol Biol 2007, 372(3):774–797. 10.1016/j.jmb.2007.05.022
Tina KG, Bhadra R, Srinivasan N: PIC: Protein Interactions Calculator. Nucleic Acids Res 2007, 35(Web Server issue):W473-W476.
Eddy SR: A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput Biol 2008, 4(5):e1000069. 10.1371/journal.pcbi.1000069
Schuster-Bockler B, Schultz J, Rahmann S: HMM Logos for visualization of protein families. BMC Bioinformatics 2004, 5: 7. 10.1186/1471-2105-5-7
Laskowski RA: PDBsum new things. Nucleic Acids Res 2009, 37(Database issue):D355-D359.