The crystal structure of unmodified tRNA Phe from Escherichia coli
Tóm tắt
Từ khóa
Tài liệu tham khảo
Schurer, 2001, This is the end: processing, editing and repair at the tRNA 3′-terminus, Biol. Chem., 382, 1147, 10.1515/BC.2001.144
Morl, 2001, The final cut - The importance of tRNA 3′-processing, EMBO Rep., 2, 17, 10.1093/embo-reports/kve006
Jühling, 2009, tRNAdb 2009: compilation of tRNA sequences and tRNA genes, Nucleic Acids Res., 37, D159, 10.1093/nar/gkn772
Rozenski, 1999, The RNA modification database: 1999 update, Nucleic Acids Res., 27, 196, 10.1093/nar/27.1.196
Robertus, 1974, Structure of yeast phenylalanine transfer RNA at 3 Å resolution, Nature, 250, 546, 10.1038/250546a0
Kim, 1974, Three dimensional tertiary structure of yeast phenylalanine transfer RNA, Science, 185, 435, 10.1126/science.185.4149.435
Shi, 2000, The crystal structure of yeast phenylalanine tRNA at 1.93 Å resolution: a classic structure revisited, RNA, 6, 1091, 10.1017/S1355838200000364
Jovine, 2000, The crystal structure of yeast phenylalanine tRNA at 2.0 Å resolution: cleavage by Mg 2+ in 15-year old crystals, J. Mol. Biol., 303, 113, 10.1006/jmbi.2000.4117
Jack, 1977, A crystallographic study of metal-binding to yeast phenylalanine transfer RNA, J. Mol. Biol., 111, 315, 10.1016/S0022-2836(77)80054-5
Leontis, 2002, The non-Watson-Crick base pairs and their associated isostericity matrices, Nucleic Acids Res., 30, 3497, 10.1093/nar/gkf481
Sussman, 1978, Crystal structure of yeast phenylalanine transfer RNA: I. Crystallographic refinement, J. Mol. Biol., 123, 607, 10.1016/0022-2836(78)90209-7
Westhof, 1988, Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals, Acta Cryst. A, 44, 112, 10.1107/S010876738700446X
Barraud, 2008, A unique conformation of the anticodon stem-loop is associated with the capacity of tRNA fMet to initiate protein synthesis, Nucleic Acids Res., 36, 4894, 10.1093/nar/gkn462
Basavappa, 1991, The 3 Å crystal structure of yeast initiator transfer RNA: functional implications in initiator/elongator discrimination, EMBO J., 10, 3105, 10.1002/j.1460-2075.1991.tb07864.x
Benas, 2000, The crystal structure of HIV reverse-transcription primer tRNA(Lys,3) shows a canonical anticodon loop, RNA, 6, 1347, 10.1017/S1355838200000911
Marck, 2002, tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features, RNA, 8, 1189, 10.1017/S1355838202022021
Serebrov, 1998, Mg 2+ binding and structural stability of mature and in vitro synthesized unmodified Escherichia coli tRNA Phe, Nucleic Acids Res., 26, 2723, 10.1093/nar/26.11.2723
Peterson, 1992, Determination of recognition nucleotides for Escherichia coli phenylalanyl-tRNA synthetase, Biochemistry, 31, 10380, 10.1021/bi00157a028
Harrington, 1993, In vitro analysis of translational rate and accuracy with an unmodified tRNA, Biochemistry, 32, 7617, 10.1021/bi00081a003
Sampson, 1988, Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro, Proc. Natl Acad. Sci. USA, 85, 1033, 10.1073/pnas.85.4.1033
Urbonavicius, 2001, Improvement of reading frame maintenance is a common function for several tRNA modifications, EMBO J., 20, 4863, 10.1093/emboj/20.17.4863
Davanloo, 1979, Role of ribothymidine in the thermal stability of transfer RNA as monitored by proton magnetic resonance, Nucleic Acids Res., 6, 1571, 10.1093/nar/6.4.1571
Grosjean, 2009, DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution, 10.1201/9781498713153
Giege, 1998, Universal rules and idiosyncratic features in tRNA identity, Nucleic Acids Res., 26, 5017, 10.1093/nar/26.22.5017
Agris, 2008, Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications, EMBO Rep., 9, 629, 10.1038/embor.2008.104
Maglott, 1998, Conformational transitions of an unmodified tRNA: implications for RNA folding, Biochemistry, 37, 16349, 10.1021/bi981722u
Behlen, 1992, An ultraviolet light-induced cross-link in yeast transfer RNA Phe, Nucleic Acids Res., 20, 4055, 10.1093/nar/20.15.4055
Behlen, 1990, Lead-catalyzed cleavage of yeast transfer RNA Phe mutants, Biochemistry, 29, 2515, 10.1021/bi00462a013
Derrick, 1993, Probing structural differences between native and in vitro transcribed Escherichia coli valine transfer RNA - evidence for stable base modification-dependent conformers, Nucleic Acids Res., 21, 4948, 10.1093/nar/21.21.4948
Perret, 1990, Conformation in solution of yeast transfer RNA Asp transcripts deprived of modified nucleotides, Biochimie, 72, 735, 10.1016/0300-9084(90)90158-D
Vermeulen, 2005, Comparison of the global structure and dynamics of native and unmodified tRNA, Biochemistry, 44, 6024, 10.1021/bi0473399
Cabello-Villegas, 2002, Solution conformations of unmodified and A 37 N 6 -dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA Phe, J. Mol. Biol., 319, 1015, 10.1016/S0022-2836(02)00382-0
Cabello-Villegas, 2005, Solution structure of Ψ32-modified anticodon stem-loop of Escherichia coli tRNA Phe, Nucleic Acids Res., 33, 6961, 10.1093/nar/gki1004
Stuart, 2003, Naturally-occurring Modification Restricts the Anticodon Domain Conformational Space of tRNA Phe, J. Mol. Biol., 334, 901, 10.1016/j.jmb.2003.09.058
Selmer, 2006, Structure of the 70S ribosome complexed with mRNA and tRNA, Science, 313, 1935, 10.1126/science.1131127
Konevega, 2004, Purine bases at position 37 of tRNA stabilize codon-anticodon interaction in the ribosomal A site by stacking and Mg 2+ -dependent interactions, RNA, 10, 90, 10.1261/rna.5142404
Waterman, 2006, Crystal structure of Bacillus anthracis ThiI, a tRNA-modifying enzyme containing the predicted RNA-binding THUMP domain, J. Mol. Biol., 356, 97, 10.1016/j.jmb.2005.11.013
Leslie, 1992, Joint CCP4 and ESF-EAMCB Newsletter on Protein Crystallgraphy, No 20
CollaborativeComputational Project, 1994, The CCP4 suite: programs for protein crystallography, Acta Cryst. D, 50, 760, 10.1107/S0907444994003112
Evans, 2006, Scaling and assessment of data quality, Acta Cryst. D, 62, 72, 10.1107/S0907444905036693
Matthews, 1968, Solvent content of protein crystals, J. Mol. Biol., 33, 491, 10.1016/0022-2836(68)90205-2
Adams, 2002, PHENIX: building new software for automated crystallographic structure determination, Acta Cryst. D, 58, 1948, 10.1107/S0907444902016657
Emsley, 2004, Coot: model-building tools for molecular graphics, Acta Cryst. D, 60, 2126, 10.1107/S0907444904019158
Murshudov, 1997, Refinement of macromolecular structures by the maximum-likelihood method, Acta Cryst. D, 53, 240, 10.1107/S0907444996012255
Winn, 2001, Use of TLS parameters to model anisotropic displacements in macromolecular refinement, Acta Cryst. D, 57, 122, 10.1107/S0907444900014736
Potterton, 2004, Developments in the CCP4 molecular-graphics project, Acta Cryst. D, 60, 2288, 10.1107/S0907444904023716
Yang, 2003, Tools for the automatic identification and classification of RNA base pairs, Nucleic Acids Res., 31, 3450, 10.1093/nar/gkg529
Seif, 2009, RNA-Protein mutually induced fit structure of Escherichia Coli isopentyl-tRNA transferase in complex with tRNA Phe, J. Biol. Chem., 284, 6600, 10.1074/jbc.C800235200
Chimnaronk, 2009, Snapshots of Dynamics in Synthesizing N-6-Isopentenyladenosine at the tRNA Anticodon, Biochemistry, 48, 5057, 10.1021/bi900337d
Rhodes, 1977, Initial stages of the thermal unfolding of yeast phenylalanine transfer RNA as studied by chemical modification: the effect of magnesium, Eur. J Biochem., 81, 91, 10.1111/j.1432-1033.1977.tb11930.x
Shelton, 2001, Altering the intermediate in the equilibrium folding of unmodified yeast tRNA Phe with monovalent and divalent cations, Biochemistry, 40, 3629, 10.1021/bi002646+
Moncany, 1981, High magnesium content of Escherichia coli B, Experientia, 37, 846, 10.1007/BF01985672
Durant, 1999, Stabilization of the anticodon stem-loop of tRNA Lys,3 by an A+-C base-pair and by pseudouridine, J. Mol. Biol., 285, 115, 10.1006/jmbi.1998.2297