The crystal structure of unmodified tRNA Phe from Escherichia coli

Nucleic Acids Research - Tập 38 Số 12 - Trang 4154-4162 - 2010
Robert T. Byrne1, Andrey L. Konevega2, Marina V. Rodnina2, Alfred A. Antson3
1York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, North Yorkshire, YO10 5YW, UK.
2Department of Physical Biochemistry, MPI for Biophysical Chemistry, Max Planck Society
3Max Planck Society, Munich, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Schurer, 2001, This is the end: processing, editing and repair at the tRNA 3′-terminus, Biol. Chem., 382, 1147, 10.1515/BC.2001.144

Morl, 2001, The final cut - The importance of tRNA 3′-processing, EMBO Rep., 2, 17, 10.1093/embo-reports/kve006

Jühling, 2009, tRNAdb 2009: compilation of tRNA sequences and tRNA genes, Nucleic Acids Res., 37, D159, 10.1093/nar/gkn772

Rozenski, 1999, The RNA modification database: 1999 update, Nucleic Acids Res., 27, 196, 10.1093/nar/27.1.196

Robertus, 1974, Structure of yeast phenylalanine transfer RNA at 3 Å resolution, Nature, 250, 546, 10.1038/250546a0

Kim, 1974, Three dimensional tertiary structure of yeast phenylalanine transfer RNA, Science, 185, 435, 10.1126/science.185.4149.435

Shi, 2000, The crystal structure of yeast phenylalanine tRNA at 1.93 Å resolution: a classic structure revisited, RNA, 6, 1091, 10.1017/S1355838200000364

Jovine, 2000, The crystal structure of yeast phenylalanine tRNA at 2.0 Å resolution: cleavage by Mg 2+ in 15-year old crystals, J. Mol. Biol., 303, 113, 10.1006/jmbi.2000.4117

Jack, 1977, A crystallographic study of metal-binding to yeast phenylalanine transfer RNA, J. Mol. Biol., 111, 315, 10.1016/S0022-2836(77)80054-5

Leontis, 2002, The non-Watson-Crick base pairs and their associated isostericity matrices, Nucleic Acids Res., 30, 3497, 10.1093/nar/gkf481

Sussman, 1978, Crystal structure of yeast phenylalanine transfer RNA: I. Crystallographic refinement, J. Mol. Biol., 123, 607, 10.1016/0022-2836(78)90209-7

Westhof, 1988, Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals, Acta Cryst. A, 44, 112, 10.1107/S010876738700446X

Barraud, 2008, A unique conformation of the anticodon stem-loop is associated with the capacity of tRNA fMet to initiate protein synthesis, Nucleic Acids Res., 36, 4894, 10.1093/nar/gkn462

Basavappa, 1991, The 3 Å crystal structure of yeast initiator transfer RNA: functional implications in initiator/elongator discrimination, EMBO J., 10, 3105, 10.1002/j.1460-2075.1991.tb07864.x

Benas, 2000, The crystal structure of HIV reverse-transcription primer tRNA(Lys,3) shows a canonical anticodon loop, RNA, 6, 1347, 10.1017/S1355838200000911

Marck, 2002, tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features, RNA, 8, 1189, 10.1017/S1355838202022021

Serebrov, 1998, Mg 2+ binding and structural stability of mature and in vitro synthesized unmodified Escherichia coli tRNA Phe, Nucleic Acids Res., 26, 2723, 10.1093/nar/26.11.2723

Peterson, 1992, Determination of recognition nucleotides for Escherichia coli phenylalanyl-tRNA synthetase, Biochemistry, 31, 10380, 10.1021/bi00157a028

Harrington, 1993, In vitro analysis of translational rate and accuracy with an unmodified tRNA, Biochemistry, 32, 7617, 10.1021/bi00081a003

Hall, 1989, Structure of an unmodified tRNA molecule, Biochemistry, 28, 5794, 10.1021/bi00440a014

Sampson, 1988, Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro, Proc. Natl Acad. Sci. USA, 85, 1033, 10.1073/pnas.85.4.1033

Urbonavicius, 2001, Improvement of reading frame maintenance is a common function for several tRNA modifications, EMBO J., 20, 4863, 10.1093/emboj/20.17.4863

Davanloo, 1979, Role of ribothymidine in the thermal stability of transfer RNA as monitored by proton magnetic resonance, Nucleic Acids Res., 6, 1571, 10.1093/nar/6.4.1571

Grosjean, 2009, DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution, 10.1201/9781498713153

Giege, 1998, Universal rules and idiosyncratic features in tRNA identity, Nucleic Acids Res., 26, 5017, 10.1093/nar/26.22.5017

Agris, 2008, Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications, EMBO Rep., 9, 629, 10.1038/embor.2008.104

Maglott, 1998, Conformational transitions of an unmodified tRNA: implications for RNA folding, Biochemistry, 37, 16349, 10.1021/bi981722u

Behlen, 1992, An ultraviolet light-induced cross-link in yeast transfer RNA Phe, Nucleic Acids Res., 20, 4055, 10.1093/nar/20.15.4055

Behlen, 1990, Lead-catalyzed cleavage of yeast transfer RNA Phe mutants, Biochemistry, 29, 2515, 10.1021/bi00462a013

Derrick, 1993, Probing structural differences between native and in vitro transcribed Escherichia coli valine transfer RNA - evidence for stable base modification-dependent conformers, Nucleic Acids Res., 21, 4948, 10.1093/nar/21.21.4948

Perret, 1990, Conformation in solution of yeast transfer RNA Asp transcripts deprived of modified nucleotides, Biochimie, 72, 735, 10.1016/0300-9084(90)90158-D

Vermeulen, 2005, Comparison of the global structure and dynamics of native and unmodified tRNA, Biochemistry, 44, 6024, 10.1021/bi0473399

Cabello-Villegas, 2002, Solution conformations of unmodified and A 37 N 6 -dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA Phe, J. Mol. Biol., 319, 1015, 10.1016/S0022-2836(02)00382-0

Cabello-Villegas, 2005, Solution structure of Ψ32-modified anticodon stem-loop of Escherichia coli tRNA Phe, Nucleic Acids Res., 33, 6961, 10.1093/nar/gki1004

Stuart, 2003, Naturally-occurring Modification Restricts the Anticodon Domain Conformational Space of tRNA Phe, J. Mol. Biol., 334, 901, 10.1016/j.jmb.2003.09.058

Selmer, 2006, Structure of the 70S ribosome complexed with mRNA and tRNA, Science, 313, 1935, 10.1126/science.1131127

Konevega, 2004, Purine bases at position 37 of tRNA stabilize codon-anticodon interaction in the ribosomal A site by stacking and Mg 2+ -dependent interactions, RNA, 10, 90, 10.1261/rna.5142404

Waterman, 2006, Crystal structure of Bacillus anthracis ThiI, a tRNA-modifying enzyme containing the predicted RNA-binding THUMP domain, J. Mol. Biol., 356, 97, 10.1016/j.jmb.2005.11.013

Leslie, 1992, Joint CCP4 and ESF-EAMCB Newsletter on Protein Crystallgraphy, No 20

CollaborativeComputational Project, 1994, The CCP4 suite: programs for protein crystallography, Acta Cryst. D, 50, 760, 10.1107/S0907444994003112

Evans, 2006, Scaling and assessment of data quality, Acta Cryst. D, 62, 72, 10.1107/S0907444905036693

Matthews, 1968, Solvent content of protein crystals, J. Mol. Biol., 33, 491, 10.1016/0022-2836(68)90205-2

McCoy, 2007, Phaser crystallographic software, J. Appl. Cryst., 40, 658, 10.1107/S0021889807021206

Adams, 2002, PHENIX: building new software for automated crystallographic structure determination, Acta Cryst. D, 58, 1948, 10.1107/S0907444902016657

Emsley, 2004, Coot: model-building tools for molecular graphics, Acta Cryst. D, 60, 2126, 10.1107/S0907444904019158

Murshudov, 1997, Refinement of macromolecular structures by the maximum-likelihood method, Acta Cryst. D, 53, 240, 10.1107/S0907444996012255

Winn, 2001, Use of TLS parameters to model anisotropic displacements in macromolecular refinement, Acta Cryst. D, 57, 122, 10.1107/S0907444900014736

Potterton, 2004, Developments in the CCP4 molecular-graphics project, Acta Cryst. D, 60, 2288, 10.1107/S0907444904023716

Yang, 2003, Tools for the automatic identification and classification of RNA base pairs, Nucleic Acids Res., 31, 3450, 10.1093/nar/gkg529

Seif, 2009, RNA-Protein mutually induced fit structure of Escherichia Coli isopentyl-tRNA transferase in complex with tRNA Phe, J. Biol. Chem., 284, 6600, 10.1074/jbc.C800235200

Chimnaronk, 2009, Snapshots of Dynamics in Synthesizing N-6-Isopentenyladenosine at the tRNA Anticodon, Biochemistry, 48, 5057, 10.1021/bi900337d

Rhodes, 1977, Initial stages of the thermal unfolding of yeast phenylalanine transfer RNA as studied by chemical modification: the effect of magnesium, Eur. J Biochem., 81, 91, 10.1111/j.1432-1033.1977.tb11930.x

Shelton, 2001, Altering the intermediate in the equilibrium folding of unmodified yeast tRNA Phe with monovalent and divalent cations, Biochemistry, 40, 3629, 10.1021/bi002646+

Moncany, 1981, High magnesium content of Escherichia coli B, Experientia, 37, 846, 10.1007/BF01985672

Durant, 1999, Stabilization of the anticodon stem-loop of tRNA Lys,3 by an A+-C base-pair and by pseudouridine, J. Mol. Biol., 285, 115, 10.1006/jmbi.1998.2297

Ashraf, 1999, Single atom modification (O -> S) of tRNA confers ribosome binding, RNA, 5, 188, 10.1017/S1355838299981529