The crystal structure of superoxide dismutase from Plasmodium falciparum
Tóm tắt
Superoxide dismutases (SODs) are important enzymes in defence against oxidative stress. In Plasmodium falciparum, they may be expected to have special significance since part of the parasite life cycle is spent in red blood cells where the formation of reactive oxygen species is likely to be promoted by the products of haemoglobin breakdown. Thus, inhibitors of P. falciparum SODs have potential as anti-malarial compounds. As a step towards their development we have determined the crystal structure of the parasite's cytosolic iron superoxide dismutase. The cytosolic iron superoxide dismutase from P. falciparum (Pf FeSOD) has been overexpressed in E. coli in a catalytically active form. Its crystal structure has been solved by molecular replacement and refined against data extending to 2.5 Å resolution. The structure reveals a two-domain organisation and an iron centre in which the metal is coordinated by three histidines, an aspartate and a solvent molecule. Consistent with ultracentrifugation analysis the enzyme is a dimer in which a hydrogen bonding lattice links the two active centres. The tertiary structure of Pf FeSOD is very similar to those of a number of other iron-and manganese-dependent superoxide dismutases, moreover the active site residues are conserved suggesting a common mechanism of action. Comparison of the dimer interfaces of Pf FeSOD with the human manganese-dependent superoxide dismutase reveals a number of differences, which may underpin the design of parasite-selective superoxide dismutase inhibitors.
Tài liệu tham khảo
Beyer W, Imlay J, Fridovich I: Superoxide dismutases. Prog Nucleic Acid Res Mol Biol 1991, 40: 221–253.
Fairfield AS, Meshnick SR, Eaton JW: Malaria parasites adopt host cell superoxide dismutase. Science 1983, 221(4612):764–766.
Becuwe P, Gratepanche S, Fourmaux MN, Van Beeumen J, Samyn B, Mercereau-Puijalon O, Touzel JP, Slomianny C, Camus D, Dive D: Characterization of iron-dependent endogenous superoxide dismutase of Plasmodium falciparum. Mol Biochem Parasitol 1996, 76(1–2):125–134.
Bustamante LY, Crooke A, Martinez J, Diez A, Bautista JM: Dual-function stem molecular beacons to assess mRNA expression in AT-rich transcripts of Plasmodium falciparum. Biotechniques 2004, 36(3):488–92, 494.
Stallings WC, Pattridge KA, Strong RK, Ludwig ML: Manganese and iron superoxide dismutases are structural homologs. J Biol Chem 1984, 259(17):10695–10699.
Tainer JA, Getzoff ED, Beem KM, Richardson JS, Richardson DC: Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase. J Mol Biol 1982, 160(2):181–217.
Parker MW, Blake CC: Iron- and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures. FEBS Lett 1988, 229(2):377–382.
Misra HP, Fridovich I: Inhibition of superoxide dismutases by azide. Arch Biochem Biophys 1978, 189(2):317–322.
Sugio S, Hiraoka BY, Yamakura F: Crystal structure of cambialistic superoxide dismutase from porphyromonas gingivalis. Eur J Biochem 2000, 267(12):3487–3495.
Gratepanche S, Menage S, Touati D, Wintjens R, Delplace P, Fontecave M, Masset A, Camus D, Dive D: Biochemical and electron paramagnetic resonance study of the iron superoxide dismutase from Plasmodium falciparum. Mol Biochem Parasitol 2002, 120(2):237–246.
Meshnick SR, Kitchener KR, Trang NL: Trypanosomatid iron-superoxide dismutase inhibitors. Selectivity and mechanism of N1,N6-bis(2,3-dihydroxybenzoyl)-1,6-diaminohexane. Biochem Pharmacol 1985, 34(17):3147–3152.
Soulere L, Delplace P, Davioud-Charvet E, Py S, Sergheraert C, Perie J, Ricard I, Hoffmann P, Dive D: Screening of Plasmodium falciparum iron superoxide dismutase inhibitors and accuracy of the SOD-assays. Bioorg Med Chem 2003, 11(23):4941–4944.
Munoz IG, Moran JF, Becana M, Montoya G: The crystal structure of an eukaryotic iron superoxide dismutase suggests intersubunit cooperation during catalysis. Protein Sci 2005, 14(2):387–394.
Plasmo DB: The Plasmodium Genome Resource [http://www.plasmodb.org]
Thompson J, Janse CJ, Waters AP: Comparative genomics in Plasmodium: a tool for the identification of genes and functional analysis. Mol Biochem Parasitol 2001, 118(2):147–154.
Sienkiewicz N, Daher W, Dive D, Wrenger C, Viscogliosi E, Wintjens R, Jouin H, Capron M, Muller S, Khalife J: Identification of a mitochondrial superoxide dismutase with an unusual targeting sequence in Plasmodium falciparum. Mol Biochem Parasitol 2004, 137(1):121–132.
van Lin LH, Pace T, Janse CJ, Birago C, Ramesar J, Picci L, Ponzi M, Waters AP: Interspecies conservation of gene order and intron-exon structure in a genomic locus of high gene density and complexity in Plasmodium. Nucleic Acids Res 2001, 29(10):2059–2068.
Pesce A, Capasso C, Battistoni A, Folcarelli S, Rotilio G, Desideri A, Bolognesi M: Unique structural features of the monomeric Cu,Zn superoxide dismutase from Escherichia coli, revealed by X-ray crystallography. J Mol Biol 1997, 274(3):408–420.
Hearn AS, Fan L, Lepock JR, Luba JP, Greenleaf WB, Cabelli DE, Tainer JA, Nick HS, Silverman DN: Amino acid substitution at the dimeric interface of human manganese superoxide dismutase. J Biol Chem 2004, 279(7):5861–5866.
Ramilo CA, Leveque V, Guan Y, Lepock JR, Tainer JA, Nick HS, Silverman DN: Interrupting the hydrogen bond network at the active site of human manganese superoxide dismutase. J Biol Chem 1999, 274(39):27711–27716.
Hough MA, Grossmann JG, Antonyuk SV, Strange RW, Doucette PA, Rodriguez JA, Whitson LJ, Hart PJ, Hayward LJ, Valentine JS, Hasnain SS: Dimer destabilization in superoxide dismutase may result in disease-causing properties: structures of motor neuron disease mutants. Proc Natl Acad Sci U S A 2004, 101(16):5976–5981.
Arkin MR, Wells JA: Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 2004, 3(4):301–317.
Tellez-Valencia A, Olivares-Illana V, Hernandez-Santoyo A, Perez-Montfort R, Costas M, Rodriguez-Romero A, Lopez-Calahorra F, Tuena De Gomez-Puyou M, Gomez-Puyou A: Inactivation of triosephosphate isomerase from Trypanosoma cruzi by an agent that perturbs its dimer interface. J Mol Biol 2004, 341(5):1355–1365.
Laue TM, Shah BD, Ridgeway TM, Pelletier SL: Computer-aided interpretation of analytical sedimentation data for proteins. In Analytical Ultracentrifugation in Biochemistry and Polmer Science. Edited by: Harding SE, Rowe AJ, Horton JC. Cambridge , The Royal Society of Chemistry; 1992:90–125.
Flohe L, Otting F: Superoxide dismutase assays. Methods Enzymol 1984, 105: 93–104.
Otwinowski Z, Minor W: Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology. In Macromolecular Crystallography, Pt A. Volume 276. San Diego , ACADEMIC PRESS INC; 1997:307–326.
Collaborative Computational Project, Number 4.: The CCP4 Suite - Programs for Protein Crystallography. Acta Crystallogr D Biol Crystallogr 1994, 50: 760–763.
Navaza J: Amore - an Automated Package for Molecular Replacement. Acta Crystallogr Sect A 1994, 50: 157–163.
Murshudov GN, Vagin AA, Dodson EJ: Refinement of macromolecular structures by the maximum- likelihood method. Acta Crystallogr D Biol Crystallogr 1997, 53: 240–255.
Oldfield T: Applications for macromolecular map interpretation: X-AUTOFIT, X-POWERFIT, X-BUILD, X-LIGAND, and X-SOLVATE. Methods Enzymol 2003, 374: 271–300.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 25(24):4876–4882.
Sali A, Blundell TL: Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993, 234(3):779–815.
Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan SJ, Karplus M: CHARMM: a Program for Macromolecular Energy, Minimization and Dynamics Calculations. J Comput Chem 1983, 4(2):187–217.
MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 1998, 102(18):3586–3616.
Laskowski RA, Macarthur MW, Moss DS, Thornton JM: Procheck - a Program to Check the Stereochemical Quality of Protein Structures. J Appl Crystallogr 1993, 26: 283–291.
Borgstahl GE, Parge HE, Hickey MJ, Beyer WFJ, Hallewell RA, Tainer JA: The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell 1992, 71(1):107–118.
Wintjens R, Noel C, May AC, Gerbod D, Dufernez F, Capron M, Viscogliosi E, Rooman M: Specificity and phenetic relationships of iron- and manganese-containing superoxide dismutases on the basis of structure and sequence comparisons. J Biol Chem 2004, 279(10):9248–9254.
Gouet P, Courcelle E, Stuart DI, Metoz F: ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 1999, 15(4):305–308.
Potterton L, McNicholas S, Krissinel E, Gruber J, Cowtan K, Emsley P, Murshudov GN, Cohen S, Perrakis A, Noble M: Developments in the CCP4 molecular-graphics project. Acta Crystallogr D Biol Crystallogr 2004, 60(Pt 12 Pt 1):2288–2294.
Baert CB, Deloron P, Viscogliosi E, Delgado-Viscogliosi P, Camus D, Dive D: Cloning and characterization of iron-containing superoxide dismutase from the human malaria species Plasmodium ovale, P. malariae and P. vivax. Parasitol Res 1999, 85(12):1018–1024.