The coordinated population redistribution between Bacillus subtilis submerged biofilm and liquid-air pellicle

Biofilm - Tập 4 - Trang 100065 - 2022
Pilar Sanchez-Vizuete1, Yasmine Dergham1,2, Arnaud Bridier3, Julien Deschamps1, Etienne Dervyn1, Kassem Hamze2, Stéphane Aymerich1, Dominique Le Coq1,4, Romain Briandet1
1Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
2Faculty of Science, Lebanese University, 1003, Beirut, Lebanon
3Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, Anses, 35300, Fougères, France
4Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France

Tài liệu tham khảo

Karygianni, 2020, Biofilm matrixome: extracellular components in structured microbial communities, Trends Microbiol, 28, 668, 10.1016/j.tim.2020.03.016 Flemming, 2016, Biofilms: an emergent form of bacterial life, Nat Rev Microbiol, 14, 563, 10.1038/nrmicro.2016.94 Mukherjee, 2021, Engineering controllable biofilms for biotechnological applications, Microb Biotechnol, 14, 74, 10.1111/1751-7915.13715 Mah, 2012, Biofilm-specific antibiotic resistance, Future Microbiol, 7, 1061, 10.2217/fmb.12.76 Nickel, 1985, Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material, Antimicrob Agents Chemother, 27, 619, 10.1128/AAC.27.4.619 Costerton, 1999, Bacterial biofilms: a common cause of persistent infections, Science, 284, 1318, 10.1126/science.284.5418.1318 da Silva, 2021, Eradicating biofilm infections: an update on current and prospective approaches, Curr Opin Microbiol, 63, 117, 10.1016/j.mib.2021.07.001 Pamp, 2009, Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy, Cytometry A, 75, 90, 10.1002/cyto.a.20685 Branda, 2001, Fruiting body formation by Bacillus subtilis, Proc Natl Acad Sci U S A, 98, 11621, 10.1073/pnas.191384198 Piggot, 2004, Sporulation of Bacillus subtilis, Curr Opin Microbiol, 7, 579, 10.1016/j.mib.2004.10.001 Kobayashi, 2007, Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes, J Bacteriol, 189, 4920, 10.1128/JB.00157-07 Vlamakis, 2013, Sticking together: building a biofilm the Bacillus subtilis way, Nat Rev Microbiol, 11, 157, 10.1038/nrmicro2960 Sanchez-Vizuete, 2015, Identification of ypqP as a New Bacillus subtilis biofilm determinant that mediates the protection of Staphylococcus aureus against antimicrobial agents in mixed-species communities, Appl Environ Microbiol, 81, 109, 10.1128/AEM.02473-14 Kearns, 2005, A master regulator for biofilm formation by Bacillus subtilis, Mol Microbiol, 55, 739, 10.1111/j.1365-2958.2004.04440.x Cairns, 2014, Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms, Mol Microbiol, 93, 587, 10.1111/mmi.12697 Bartolini, 2019, Regulation of biofilm aging and dispersal in Bacillus subtilis by the alternative sigma factor SigB, J Bacteriol, 201, 10.1128/JB.00473-18 Milton, 2020, The solution structures and interaction of SinR and SinI: elucidating the mechanism of action of the master regulator switch for biofilm formation in Bacillus subtilis, J Mol Biol, 432, 343, 10.1016/j.jmb.2019.08.019 Nishikawa, 2021, Calcium prevents biofilm dispersion in Bacillus subtilis, J Bacteriol, 203, 10.1128/JB.00114-21 Arnaouteli, 2021, Bacillus subtilis biofilm formation and social interactions, Nat Rev Microbiol, 10.1038/s41579-021-00540-9 Chai, 2010, Reversal of an epigenetic switch governing cell chaining in Bacillus subtilis by protein instability, Mol Microbiol, 78, 218, 10.1111/j.1365-2958.2010.07335.x López, 2010, Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis, FEMS Microbiol Rev, 34, 134, 10.1111/j.1574-6976.2009.00199.x Diethmaier, 2011, A novel factor controlling bistability in Bacillus subtilis: the YmdB protein affects flagellin expression and biofilm formation, J Bacteriol, 193, 5997, 10.1128/JB.05360-11 Romero, 2010, Amyloid fibers provide structural integrity to Bacillus subtilis biofilms, Proc Natl Acad Sci U S A, 107, 2230, 10.1073/pnas.0910560107 Ostrowski, 2011, YuaB functions synergistically with the exopolysaccharide and TasA amyloid fibers to allow biofilm formation by Bacillus subtilis, J Bacteriol, 193, 4821, 10.1128/JB.00223-11 Kobayashi, 2012, BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms, Mol Microbiol, 85, 51, 10.1111/j.1365-2958.2012.08094.x Roux, 2015, Identification of poly-N-acetylglucosamine as a major polysaccharide component of the Bacillus subtilis biofilm matrix, J Biol Chem, 290, 19261, 10.1074/jbc.M115.648709 El Mammeri, 2019, Molecular architecture of bacterial amyloids in Bacillus biofilms, FASEB J, 33, 12146, 10.1096/fj.201900831R Bridier, 2011, The spatial architecture of Bacillus subtilis biofilms deciphered using a surface-associated model and in situ imaging, PLoS One, 6, 10.1371/journal.pone.0016177 Bridier, 2012, Biofilms of a Bacillus subtilis hospital isolate protect Staphylococcus aureus from biocide action, PLoS One, 7, 10.1371/journal.pone.0044506 Abe, 2014, Developmentally-regulated excision of the SPβ prophage reconstitutes a gene required for spore envelope maturation in Bacillus subtilis, PLoS Genet, 10, 10.1371/journal.pgen.1004636 Chen, 2013, Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation, Environ Microbiol, 15, 848, 10.1111/j.1462-2920.2012.02860.x Pandin, 2017, Should the biofilm mode of life be taken into consideration for microbial biocontrol agents?, Microb Biotechnol, 10, 719, 10.1111/1751-7915.12693 Terra, 2012, Identification of Bacillus subtilis SipW as a bifunctional signal peptidase that controls surface-adhered biofilm formation, J Bacteriol, 194, 2781, 10.1128/JB.06780-11 Dergham, 2021, Comparison of the genetic features involved in Bacillus subtilis biofilm formation using multi-culturing approaches, Microorganisms, 9, 633, 10.3390/microorganisms9030633 Martin, 2008, Resistance and cross-resistance to oxidising agents of bacterial isolates from endoscope washer disinfectors, J Hosp Infect, 69, 377, 10.1016/j.jhin.2008.04.010 Norman, 2013, Memory and modularity in cell-fate decision making, Nature, 503, 481, 10.1038/nature12804 Rühl, 2012, 13C-flux analysis reveals NADPH-balancing transhydrogenation cycles in stationary phase of nitrogen-starving Bacillus subtilis, Journal of Biological Chemistry, 287, 27959, 10.1074/jbc.M112.366492 Botella, 2010, pBaSysBioII: an integrative plasmid generating gfp transcriptional fusions for high-throughput analysis of gene expression in Bacillus subtilis, Microbiology (Reading), 156, 1600, 10.1099/mic.0.035758-0 Deng, 2011, Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. carotovora, J Bacteriol, 193, 2070, 10.1128/JB.00129-11 Schyns, 2013, Genome of a gut strain of Bacillus subtilis, Genome Announc, 1, 10.1128/genomeA.00184-12 Houry, 2010, Involvement of motility and flagella in Bacillus cereus biofilm formation, Microbiology (Reading), 156, 1009, 10.1099/mic.0.034827-0 De Clerck, 2004, Genotypic diversity among Bacillus licheniformis strains from various sources, FEMS Microbiol Lett, 231, 91, 10.1016/S0378-1097(03)00935-2 Bridier, 2010, The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method, J Microbiol Methods, 82, 64, 10.1016/j.mimet.2010.04.006 Hartmann, 2021, Quantitative image analysis of microbial communities with BiofilmQ, Nat Microbiol, 6, 151, 10.1038/s41564-020-00817-4 Ayachit, 2015 Nicolas, 2012, Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis, Science, 335, 1103, 10.1126/science.1206848 Rath, 2020, Impact of high salinity and the compatible solute glycine betaine on gene expression of Bacillus subtilis, Environ Microbiol, 22, 3266, 10.1111/1462-2920.15087 Fillinger, 2000, Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium, J Biol Chem, 275, 14031, 10.1074/jbc.275.19.14031 Hou, 2000, Myoglobin-like aerotaxis transducers in archaea and bacteria, Nature, 403, 540, 10.1038/35000570 Sachla, 2021, Manganese impairs the QoxABCD terminal oxidase leading to respiration-associated toxicity, Mol Microbiol, 10.1111/mmi.14767 Nakano, 1998, Anaerobic growth of a “strict aerobe” (Bacillus subtilis), Annu Rev Microbiol, 52, 165, 10.1146/annurev.micro.52.1.165 Rumbaugh, 2020, Biofilm dispersion, Nat Rev Microbiol, 18, 571, 10.1038/s41579-020-0385-0 Kolodkin-Gal, 2013, Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase, Genes Dev, 27, 887, 10.1101/gad.215244.113 Hölscher, 2015, Motility, chemotaxis and aerotaxis contribute to competitiveness during bacterial pellicle biofilm development, J Mol Biol, 427, 3695, 10.1016/j.jmb.2015.06.014 Thormann, 2005, Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms, J Bacteriol, 187, 1014, 10.1128/JB.187.3.1014-1021.2005 Nakano, 1997, Adaptation of Bacillus subtilis to oxygen limitation, FEMS Microbiol Lett, 157, 1, 10.1111/j.1574-6968.1997.tb12744.x Kostakioti, 2013, Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era, Cold Spring Harb Perspect Med, 3, a010306, 10.1101/cshperspect.a010306 Cascioferro, 2021, Therapeutic strategies to counteract antibiotic resistance in MRSA biofilm-associated infections, ChemMedChem, 16, 65, 10.1002/cmdc.202000677 Barraud, 2015, Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases, Curr Pharm Des, 21, 31, 10.2174/1381612820666140905112822 Warraich, 2020, Evaluation of anti-biofilm activity of acidic amino acids and synergy with ciprofloxacin on Staphylococcus aureus biofilms, Sci Rep, 10, 9021, 10.1038/s41598-020-66082-x