The convergence constants and non linear approximations of fusion frames
Tóm tắt
In this paper, we study the unconditional constant and nonlinear N-term approximation of fusion frames in Hilbert spaces. We show that the unconditional constant and greedy constant are bounded by a constant which is associated with the fusion frame bounds. We prove that the unconditional constant of cross fusion frame expansions satisfies the similar properties as long as the cross g-frame expansions stay uniformly bounded away from zero. Finally, we show that fusion frames satisfy the quasi greedy and almost greedy conditions. Moreover, we prove that fusion Riesz bases satisfy the greedy condition.
Tài liệu tham khảo
Bemrose, T., Casazza, P.G., Kaftal, V., Lynch, R.G.: The unconditional constants for Hilbert space frame expansions. Linear Algebra Appl. 521, 1–18 (2017)
Bodmann, B.G.: Optimal linear transmission by loss-insensitive packet encoding. Appl. Comput. Harmon. Anal. 22(3), 274–285 (2007)
Casazza, P.G., Christensen, O.: Approximation of the inverse frame operator and applications to Gabor frames. J. Approx. Theory 103(2), 338–356 (2000)
Casazza, P.G., Kutyniok, G.: Frames of subspaces. Contemp. Math. 345, 87–114 (2004)
Casazza, P.G., Kutyniok, G., Li, S.: Fusion frames and distributed processing. Appl. Comput. Harmon. Anal. 25(1), 114–132 (2008)
Chebira, A., Fickus, M., Mixon, D.G.: Filter bank fusion frames. IEEE Trans. Signal Process. 59(3), 953–963 (2011)
Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27(5), 1271–1283 (1986)
DeVore, R.A.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)
Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72(2), 341–366 (1952)
Eldar, Y.C.: Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors. J. Fourier Anal. Appl. 9(1), 77–96 (2003)
Heil, C.: A Basis Theory Primer, expanded Springer, Berlin (2010)
Leng, J., Han, D., Huang, T.: Optimal dual frames for communication coding with probabilistic erasures. IEEE Trans. Signal Process. 59(11), 5380–5389 (2011)
Li, D., Leng, J., He, M.: Optimal dual frames for probabilistic erasures. IEEE Access 7, 2774–2781 (2019)
Li, D., Leng, J., Huang, T., Gao, Q.: Frame expansions with probabilistic erasures. Digital Signal Process. 72, 75–82 (2018)
Rahimi, A.: Projection method for frame operator of frame of subspaces. Southeast Asian Bull. Math. 33, 899–911 (2009)
Shamsabadi, M., Arefijamaal, A.A.: The invertibility of fusion frame multipliers. Linear Multilinear Algebra 65(5), 1062–1072 (2017)
Temlyakov, V.N.: The best m-term approximation and greedy algorithms. Adv. Comput. Math. 8(3), 249–265 (1998)