The conformal symmetry generated by equal-time commutators
Tóm tắt
At the classical level we derive naively from the Ward identity for the conformal symmetry, treated as a diffeomorphism, the equal-time commutator between the improved energy-momentum tensor θ
mn
(y) and the θ
k0(x)-components. The metric field is introduced as an external source for the stress tensor. The analysis is done in the weak-field approximation for the metric field. It is further shown that these equal-time commutators imply the correct conformal symmetry properties for the energy-momentum tensor and the desired algebra of the generators for the conformal symmetry group. A simple redefinition of the non-covariant time ordering operator allows to define a «symmetric» equal-time commutator. Our result reproduces an older result, obtained some time ago by Schwinger. The investigations are done in an arbitraryd-dimensional Minkowski space.
Tài liệu tham khảo
M. Kaku:Introduction to Superstrings, Graduate Texts in Contemporary Physics (Springer-Verlag, 1988).
J. Bagger:Basic Conformal Field Theory, lectures presented at the1988 Summer Institute on Particles and Fields, August 14–27, 1988, HUTP-89/A 006.
A. Wipf:Einführung in konforme Feldtheorien, ETH-Hönggerberg, CH-8093, Zürich, Switzerland.
E. Kraus andK. Sibold:Nucl. Phys. B,372, 113 (1992).
R. Jackiw:Dilatation Symmetry and Light-Cone Commutators, Extended version of lectures delivered at the University of Turin, June 1971 and DESY Summer School, July, 1971.
G. Bandelloni, C. Becchi, A. Blasi andR. Collina:Nucl. Phys. B.,197, 347 (1982).
W. Zimmermann:Commun. Math. Phys.,15, 208 (1969).
J. H. Lowenstein andW. Zimmermann:Commun. Math. Phys.,44, 73 (1975).
J. Schwinger:Phys. Rev.,130, 406 (1963).
N. D. Birrel andP. C. W. Davies:Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).
J. Schwinger:Phys. Rev.,127, 324 (1962).