The conformal symmetry generated by equal-time commutators

Il Nuovo Cimento A (1965-1970) - Tập 106 - Trang 905-915 - 2008
A. Boresch1, K. Landsteiner1, O. Piguet2, M. Schweda1
1Institut für Theoretische Physik, Technische Universität Wien, Wien, Austria
2Département de Physique Théorique, Université de Genève, Genève, Switzerland

Tóm tắt

At the classical level we derive naively from the Ward identity for the conformal symmetry, treated as a diffeomorphism, the equal-time commutator between the improved energy-momentum tensor θ mn (y) and the θ k0(x)-components. The metric field is introduced as an external source for the stress tensor. The analysis is done in the weak-field approximation for the metric field. It is further shown that these equal-time commutators imply the correct conformal symmetry properties for the energy-momentum tensor and the desired algebra of the generators for the conformal symmetry group. A simple redefinition of the non-covariant time ordering operator allows to define a «symmetric» equal-time commutator. Our result reproduces an older result, obtained some time ago by Schwinger. The investigations are done in an arbitraryd-dimensional Minkowski space.

Tài liệu tham khảo

M. Kaku:Introduction to Superstrings, Graduate Texts in Contemporary Physics (Springer-Verlag, 1988). J. Bagger:Basic Conformal Field Theory, lectures presented at the1988 Summer Institute on Particles and Fields, August 14–27, 1988, HUTP-89/A 006. A. Wipf:Einführung in konforme Feldtheorien, ETH-Hönggerberg, CH-8093, Zürich, Switzerland. E. Kraus andK. Sibold:Nucl. Phys. B,372, 113 (1992). R. Jackiw:Dilatation Symmetry and Light-Cone Commutators, Extended version of lectures delivered at the University of Turin, June 1971 and DESY Summer School, July, 1971. G. Bandelloni, C. Becchi, A. Blasi andR. Collina:Nucl. Phys. B.,197, 347 (1982). W. Zimmermann:Commun. Math. Phys.,15, 208 (1969). J. H. Lowenstein andW. Zimmermann:Commun. Math. Phys.,44, 73 (1975). J. Schwinger:Phys. Rev.,130, 406 (1963). N. D. Birrel andP. C. W. Davies:Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982). J. Schwinger:Phys. Rev.,127, 324 (1962).