Thành phần axit béo và đồng vị ổn định trong loài detritophage Acila insignis (Gould, 1861) (Bivalvia: Nuculidae): Tìm kiếm dấu hiệu của mạng lưới thực phẩm vi sinh

Russian Journal of Marine Biology - Tập 37 - Trang 201-208 - 2011
V. I. Kharlamenko1, S. I. Kiyashko1, S. A. Rodkina1, V. I. Svetashev1
1Institute of Marine Biology, Far East Branch, Russian Academy of Sciences, Vladivostok, Russia

Tóm tắt

Thành phần axit béo và tỷ lệ đồng vị ổn định của carbon, nitơ và lưu huỳnh đã được phân tích trong loài nhuyễn thể hai mảnh Acila insignis, một loài detritophage chọn lọc sống trong trầm tích cát dưới thủy triều của vịnh Vostok (Biển Nhật Bản). Các mô mềm của A. insignis chứa nồng độ bất thường cao của axit arachidonic đa không bão hòa, 20: 4(n-6), và một axit béo đơn không bão hòa hiếm 20: 1(n-13), điều này phân biệt loài này với các nhuyễn thể hai mảnh khác. Nồng độ cao của các axit béo này trong A. insignis, cùng với giá trị thấp của σ34S và giá trị cao của σ13C và σ15N, có thể là kết quả của việc ăn vào mạng lưới thực phẩm vi sinh.

Từ khóa

#Acila insignis #axit béo #đồng vị ổn định #mạng lưới thực phẩm vi sinh #nhuyễn thể hai mảnh

Tài liệu tham khảo

Kiyashko, S.I., Kharlamenko, V.I., and Imbs, A.B., Stable Isotope Ratios and Fatty Acids as Food Source Markers of Deposit-Feeding Invertebrates, Russ. J. Mar. Biol., 1998, vol. 24, no. 3, pp. 170–174. Selin, N.I., Vertical Distribution of Infaunal Bivalve Mollusks of Upper Subtidal Sands in Connection with Morphofunctional Adaptations of Their Shells, Dokl. Ros. Akad. Nauk, 1999, vol. 368, pp. 571–573. Kharlamenko, V.I., Kiyashko, S.I., Rodkina, S.A., and Imbs, A.B., Determination of Food Sources of Marine Invertebrates from a Subtidal Sand Community Using Analyses of Fatty Acids and Stable Isotopes, Russ. J. Mar. Biol., 2008, vol. 34, no. 2, pp. 101–109. Allen, C.E., Tyler, P.A., and Van Dover, C.L., Lipid Composition of the Hydrothermal Vent Clam Calyptogena pacifica (Mollusca: Bivalvia) as a Trophic Indicator, J. Mar. Biol. Assoc. U.K., 2001, vol. 81, pp. 817–821. Andersson, B.A. and Holman, R.T., Mass Spectrometric Determination of Positions of Double Bonds in Polyunsaturated Fatty Acid Pyrrolidides, Lipids, 1975, vol. 10, pp. 215–219. Azam, F., Fenchel, T., Field, J.G., et al., The Ecological Role of Water-Column Microbes in the Sea, Mar. Ecol. Prog. Ser., 1983, vol. 10, pp. 257–263. Ben-Mlih, F., Marty, J.C., and Fiala-Medioni, A., Fatty Acid Composition in Deep Hydrothermal Vent Symbiotic Bivalves, J. Lipid Res., 1992, vol. 33, pp. 1797–1806. Berg, C.J., Krzynowek, J., Alatalo, P., et al., Sterol and Fatty Acid Composition of the Clam, Codakia orbicularis, with Chemoautotrophic Symbionts, Lipids, 1985, vol. 20, pp. 116–120. Bligh, E.G. and Dyer, W.J., A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol., 1959, vol. 37, pp. 911–917. Buhring, S.I., Koppelmann, R., Christiansen, B., et al., Are Rhodophyceae a Dietary Component for Deep-Sea Holothurians? J. Mar. Biol. Assoc. U.K., 2002, vol. 82, pp. 347–348. Carreau, J.P. and Dubacq, J.P., Adaptation of Macroscale Method to the Micro-scale for Fatty Acid Methyl Transesterification of Biological Lipid Extracts, J. Chromatogr., 1978, vol. 151, pp. 384–390. Cheng, I.J. and Lopez, G.R., Contributions of Bacteria and Sedimentary Organic Matter to the Diet of Nucula proxima, a Deposit-Feeding Protobranchiate Bivalve, Ophelia, 1991, vol. 34, pp. 157–170. Conway, N. and Capuzzo, J.M., Incorporation and Utilization of Bacterial Lipids in the Solemya velum Symbiosis, Mar. Biol., 1991, vol. 108, pp. 277–291. Dalsgaard, J., John, M.,St., Kattner, G., et al., Fatty Acid Trophic Markers in the Pelagic Marine Environment, Adv. Mar. Biol., 2003, vol. 46, pp. 225–340. Desvilettes, C., Bourdier, G., Breton, J.C., et al., Fatty Acids as Organic Markers for the Study of Trophic Relationships in Littoral Cladoceran Communities of a Pond, J. Plankton Res., 1994, vol. 16, pp. 643–659. Fullarton, J.G., Dando, P.R., Sargent, J.R., et al., Fatty Acids of Hydrothermal Vent Ridgeia piscesae and Inshore Bivalves Containing Symbiotic Bacteria, J. Mar. Biol. Assoc. U.K., 1995a, vol. 75, pp. 455–468. Fullarton, J.G., Wood, A.P., and Sargent, J.R., Fatty Acid Composition of Lipids from Sulfur-Oxidizing and Methylotrophic Bacteria from Thyasirid and Lucinid Bivalves, J. Mar. Biol. Assoc. U.K., 1995b, vol. 75, pp. 445–454. Ginger, M.L., Santos, V., and Wolff, G.A., A Preliminary Investigation of the Lipids of Abyssal Holothurians from the North-East Atlantic Ocean, J. Mar. Biol. Assoc. U.K., 2000, vol. 80, pp. 139–146. Gooday, A.J., Pond, D.W., and Bowser, S.S., Ecology and Nutrition of the Large Agglutinated Foraminiferan Bathysiphon capillare in the Bathyal NE Atlantic: Distribution within the Sediment Profile and Lipid Biomarker Composition, Mar. Ecol. Prog. Ser., 2002, vol. 245, pp. 69–82. Hobson, K.A., Fisk, A., Karnovsky, N., et al., A Stable Isotope (δ13C, δ15N) Model for the North Water Food Web: Implications for Evaluating Trophodynamics and the Flow of Energy and Contaminants, Deep-Sea Res. II, 2002, vol. 49, pp. 5131–5150. Howell, K.L., Pond, D.W., Billett, D.S.M., et al., Feeding Ecology of Deep-Sea Seastars (Echinodermata: Asteroidea): a Fatty-Acid Biomarker Approach, Mar. Ecol. Prog. Ser., 2003, vol. 255, pp. 193–206. Jahnke, L.L., Summons, R.E., Dowling, L.M., et al., Identification of Methanotrophic Lipid Biomarkers in Cold-Seep Mussel Gills-Chemical and Isotopic Analysis, Appl. Environ. Microbiol., 1995, vol. 61, pp. 576–582. Kharlamenko, V.I., Kiyashko, S.I., Imbs, A.B., et al., Identification of Food Sources of Invertebrates from the Seagrass Zostera marina Community Using Carbon and Sulfur Stable Isotope Ratio and Fatty Acid Analyses, Mar. Ecol. Prog. Ser., 2001, vol. 220, pp. 103–117. Kharlamenko, V.I., Zhukova, N.V., Khotimchenko, S.V., et al. Fatty Acids as Markers of Food Sources in a Shallow-Water Hydrothermal Ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands), Mar. Ecol. Prog. Ser., 1995, vol. 120, pp. 231–241. Laureillard, J., Mejanelle, L., and Sibuet, M., Use of Lipids to Study the Trophic Ecology of Deep-Sea Xenophyophores, Mar. Ecol. Prog. Ser., 2004, vol. 270, pp. 129–140. Mansour, M., Holdsworth, D., Forbes, S., et al., High Contents of 24: 6(n-3) and 20: 1(n-13) Fatty Acids in the Brittle Star from Tasmanian Coastal Sediments, Biochem. Syst. Ecol., 2005, vol. 33, pp. 659–674. McCutchan, J.H., Lewis, W.M., Kendall, C., Variation in Trophic Shift for Stable Isotope Ratios of Carbon, Nitrogen, and Sulfur, Oikos, 2003, vol. 102, pp. 378–390. Mincks, S.L., Smith, C.R., Jeffreys, R.M., et al., Trophic Structure on the West Antarctic Peninsula Shelf: Detritivory and Benthic Inertia Revealed by δ13C and δ15N Analysis, Deep-Sea Res. II, 2008, vol. 55, pp. 2502–2514. Moncreiff, C.A. and Sullivan, M.J., Trophic Importance of Epiphytic Algae in Subtropical Seagrass Beds: Evidence from Multiple Stable Isotope Analyses, Mar. Ecol. Prog. Ser., 2001, vol. 215, pp. 93–106. Nichols, D.S., Nichols, P.D., and McMeekin, T.A., Polyunsaturated Fatty Acids in Antarctic Bacteria, Antarct. Sci., 1993, vol. 5, pp.149–160. Ota, T., Ando, Y., Nakajima, H., et al., C20–C24 Monounsaturated Fatty Acid Isomers in the Lipids of Flathead Flounder, Hippoglossoides dubius, Comp. Biochem. Physiol. B., 1995, vol. 111, pp. 195–200. Pomeroy, L.R., Caught in the Food Web: Complexity Made Simple? Sci. Mar., 2001, vol. 65, pp. 31–40. Pond, D.W., Bell, M.V., Dixon, D.R., et al., Stable Carbon-Isotope Composition of Fatty Acids in Hydrothermal Vent Mussels Containing Methanotrophic and Thiotrophic Bacterial Endosymbionts, Appl. Environ. Microbiol., 1998, vol. 64, pp. 370–375. Riera, P., Escaravage, C., and Leroux, C., Trophic Ecology of the Rocky Shore Community Associated with the Ascophyllum nodosum Zone (Roscoff, France): A δ13C vs. δ15N Investigation, Estuar. Coast. Shelf Sci., 2009, vol. 81, pp. 143–148. Saito, H., Unusual Novel n-4 Polyunsaturated Fatty Acids in Cold-Seep Mussels (Bathymodiolus japonicus and Bathymodiolus platifrons), Originating from Symbiotic Methanotrophic Bacteria, J. Chromatogr. A, 2008, vol. 1200, pp. 242–254. Saito, H. and Osako, K., Confirmation of a New Food Chain Utilizing Geothermal Energy: Unusual Fatty Acids of a Deep-Sea Bivalve, Calyptogena phaseoliformis, Limnol. Oceanogr., 2007, vol. 52, pp. 1910–1918. Sorokin, Yu.I., Microheterotrophic Organisms in Marine Ecosystems, Analysis of Marine Ecosystems, New York: Academic Press, 1981, pp. 293–342. Stasek, C.R., The Ciliation and Function of the Labial Palps of Acila castrensis (Protobranchia, Nuculidae), with an Evaluation of the Role of the Protobranch Organs of Feeding in the Evolution of the Bivalvia, Proc. Zool. Soc. Lond., 1961, vol. 137, pp. 511–538. Vander Zanden, M.J. and Rasmussen, J.B., Variation in δ15N and δ13C Trophic Fractionation: Implications for Aquatic Food Web Studies, Limnol. Oceanogr., 2001, vol. 46, pp. 2061–2066. Zardus, J.D., Protobranch Bivalves, Adv. Mar. Biol., 2002, vol. 42, pp. 1–65. Zhukova, N.V. and Kharlamenko, V.I., Sources of Essential Fatty Acids in the Marine Microbial Loop, Aquat. Microb. Ecol., 1999, vol. 17, pp. 153–157.