The complete genome sequence of the algicidal bacterium Bacillus subtilis strain JA and the use of quorum sensing to evaluate its antialgal ability
Tài liệu tham khảo
Medlin, 2013, Molecular tools for monitoring harmful algal blooms, Environ. Sci. Poll. Res, 20, 6683, 10.1007/s11356-012-1195-3
Li, 2014, Towards molecular, physiological, and biochemical understanding of photosynthetic inhibition and oxidative stress in the toxic A. Tamarense induced by a marine bacterium, Appl. Microbiol. Biotechnol., 98, 4637, 10.1007/s00253-014-5578-x
Anderson, 2012, Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management, Ann. Rev. Mar. Sci., 4, 143, 10.1146/annurev-marine-120308-081121
Wang, 2012, A marine bacterium producing protein with algicidal activity against Alexandrium tamarense, Harmful Algae, 13, 83, 10.1016/j.hal.2011.10.006
Anderson, 2009, Approaches to monitoring, control and management of harmful algal blooms (HABs), Ocean. Coast. Manage., 52, 342, 10.1016/j.ocecoaman.2009.04.006
Sengco, 2004, Controlling harmful algal blooms through clay flocculation1, J. Eukary. Microbiol., 51, 169, 10.1111/j.1550-7408.2004.tb00541.x
Liao, 2014, Optimization of liquid media and biosafety assessment for algae-lysing bacterium NP23, Can. J. Microbiol., 60, 593, 10.1139/cjm-2014-0322
Li, 2015, Algicidal activity of Bacillus sp. Lzh-5 and its algicidal compounds against Microcystis aeruginosa, Appl. Microbiol. Biotechnol., 99, 981, 10.1007/s00253-014-6043-6
Zhang, 2016, Algicidal effects of prodigios in on the harmful algae Phaeocystis globosa, Front. Microbiol., 7, 602
Liao, 2015, Characterization and effects of two algicidal isolates on antioxidase activities of Chlorella pyrenoidosa, Environ. Prog. Sust. Ener., 34, 1647, 10.1002/ep.12170
Liao, 2015, Two novel algicidal isolates kill Chlorella pyrenoidosa by inhibiting their host antioxidase activities, Appl. Biochem. Biotechnol., 177, 567, 10.1007/s12010-015-1749-1
Bai, 2011, Bacterial quorum sensing and food industry, Compr. Rev. Food Sci. Food Saf., 10, 183, 10.1111/j.1541-4337.2011.00150.x
Hammer, 2003, Quorum sensing controls biofilm formation in Vibrio cholerae, Mol. Microbiol., 50, 101, 10.1046/j.1365-2958.2003.03688.x
Smith, 2004, Quorum sensing: a primer for food microbiologists, J. Food Prot., 67, 1053, 10.4315/0362-028X-67.5.1053
Hardie, 2008, Establishing bacterial communities by’ word of mouth’: LuxS and autoinducer 2 in biofilm development, Nat. Rev. Microbiol., 6, 635, 10.1038/nrmicro1916
Magnuson, 1994, Biochemical and genetic characterization of a competence pheromone from B. Subtilis, Cell, 77, 207, 10.1016/0092-8674(94)90313-1
Esmaeilishirazifard, 2017, Genomic and molecular characterization of a novel quorum sensing molecule in Bacillus licheniformis, AMB Express, 7, 78, 10.1186/s13568-017-0381-6
Okada, 2005, Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX, Nat. Chem. Biol., 1, 23, 10.1038/nchembio709
Esmaeilishirazifard, 2018, A novel antifungal property for the Bacillus licheniformis ComX pheromone and its possible role in inter-kingdom cross-talk, Appl. Microbiol. Biotechnol., 102, 5197, 10.1007/s00253-018-9004-7
Wu, 2017, NprR-NprX quorum-sensing system regulates the algicidal activity of Bacillus sp. Strain s51107 against bloom-forming cyanobacterium Microcystis aeruginosa, Front. Microbiol., 8, 1968, 10.3389/fmicb.2017.01968
Grossman, 1995, Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis, Annu. Rev. Genet., 29, 477, 10.1146/annurev.ge.29.120195.002401
Ansaldi, 2002, Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants, Mol. Microbiol., 44, 1561, 10.1046/j.1365-2958.2002.02977.x
Wang, 2015, Draft genome sequence of Citrobacter freundii strain ST2, a γ-proteobacterium that produces N-acylhomoserine lactones, Gen. Data., 6, 234, 10.1016/j.gdata.2015.10.003
Conesa, 2005, Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research, Bioinformatics, 21, 3674, 10.1093/bioinformatics/bti610
Lagesen, 2007, RNAmmer: consistent and rapid annotation of ribosomal RNA genes, Nucl. Acid. Res., 35, 3100, 10.1093/nar/gkm160
Lowe, 1997, tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence, Nucl. Acid. Res., 25, 955, 10.1093/nar/25.5.955
Zhou, 2010, Study on the ecological safety of algacides: a comprehensive strategy for their screening, J. Appl. Psychol., 22, 803
Zhang, 2013, Effect of oxidative stress induced by Brevibacterium sp. BS01 on a HAB causing species-Alexandrium tamarense, PLoS One, 8
Ray, 2014, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cell. Signal., 24, 981, 10.1016/j.cellsig.2012.01.008
Tan, 2016, Photosynthetic inhibition and oxidative stress to the toxic Phaeocystis globosa caused by a diketopiperazine isolated from products of algicidal bacterium metabolism, J. Microbiol., 54, 364, 10.1007/s12275-016-6012-0
Meyer, 2017, Strategies and ecological roles of algicidal bacteria, FEMS Microbiol. Rev., 41, 880, 10.1093/femsre/fux029
Guo, 2016, The algicidal activity of Aeromonas sp. Strain GLY-2107 against bloom-forming Microcystis aeruginosa is regulated by N-acyl homoserine lactone-mediated quorum sensing, Environ. Microbiol., 18, 3867, 10.1111/1462-2920.13346
Harvey, 2016, A Bacterial quorum-sensing precursor induces mortality in the marine coccolithophore, Emiliania huxleyi, Front. Microbiol., 7, 59, 10.3389/fmicb.2016.00059
Zhou, 2016, Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions, Crit. Rev. Plant. Sci., 2, 81, 10.1080/07352689.2016.1172461
Zhou, 2016, Genome sequence of Enterobacter sp. ST3, a quorum sensing bacterium associated with marine dinoflagellate, Gen. Data, 7, 195, 10.1016/j.gdata.2016.01.008
Eventov, 2016, Social evolution selects for redundancy in bacterial quorum sensing, PLoS Biol., 14
Martínez, 2015, Stenotrophomonas maltophilia responds to exogenous AHL signals through the LuxR solo SmoR (Smlt1839), Front. Cell. Infect. Microbiol., 5, 41
Gan, 2015, Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of luxI and luxR homologs in bacteria belonging to the Sphingomonadaceae family, Front. Cell. Infect. Microbiol., 4, 188, 10.3389/fcimb.2014.00188