The complete genome sequence of the Gram-positive bacterium Bacillus subtilis

Nature - Tập 390 Số 6657 - Trang 249-256 - 1997
Antoine Danchin1, Naotaka Ogasawara2, Ivan Moszer3, A Albertini4, G. Alloni4, Vasco Azevedo5, Michela G. Bertero3, P. Bessières5, Robert Bossy5, Stefan Borchert6, Rainer Borriss7, Laurent Boursier3, Alain Brans8, Martha Braun9, S. C. Brignell10, Sierd Bron11, Sophie Brouillet3, Carlo V. Bruschi12, Bruce A. Caldwell13, Nathalie Galleron5, Nick Carter10, Soo-Keun Choi14, Jean-Jacques Codani15, Ian F. Connerton16, Nicola J. Cummings16, Richard A. Daniel17, François Denizot18, Kevin M. Devine19, Andreas Düsterhöft9, S. Dusko Ehrlich5, Peter T. Emmerson20, K.-D. Entian6, Jeff Errington17, Céline Fabret18, E Ferrari13, D. Foulger17, C. Fritz9, Masaya Fujita21, Yusuke Fujita22, Simone Fulda23, Alessandro Galizzi4, Sa‐Youl Ghim14, Philippe Glaser3, A Goffeau24, Elizabeth J. Golightly25, Guido Grandi26, G. Guiseppi18, B. J. Guy10, Koki Haga27, Jacques Haiech18, Colin R. Harwood10, Charlotte Corporeau28, Helmut Hilbert9, Siger Holsappel11, Satoyo Hosono29, Marie-Françoise Hullo3, Mitsuhiro Itaya30, Louis Jones31, Bernard Joris8, Dimitri Karamata32, Yasuhiro Kasahara2, Maude Pupin3, C Klein6, Yasumasa Kobayashi29, P. Koetter6, Gregory M. Koningstein33, Steffen Krogh19, Miyuki Kumano23, Kenji L. Kurita23, Alla Lapidus5, Sophie Lardinois8, Jürgen Lauber9, Vladimir Lazarević32, Siow Ming Lee34, Anna Levine35, Haizhou Liu27, Shōgo Masuda29, Catherine Mauël32, Claudine Médigue36, Nadine Medina35, Rafael P. Mellado37, Mamoru Mizuno29, D. Moestl9, S. Nakai2, Michiel Noback11, David Noone19, Mary O’Reilly19, K. Ogawa23, Atsushi Ogiwara38, Bauke Oudega33, S.-H. Park14, Vı́ctor Parro37, Thomas Pohl39, Daniel Portetelle40, Steffen Porwollik7, Andy G. Prescott17, Elena Presecan3, Petar Pujić5, B. Purnelle24, G Rapoport1, Michael W. Rey25, S. Reynolds32, Michael A. Rieger41, Carlo Rivolta32, Eduardo P. C. Rocha36, Benjamin Roche35, Matthias Rose6, Yoshito Sadaie21, Tsutomu Sato29, Elizabeth Scanlan19, Sibylle Schleich3, R. Schroeter7, F Scoffone4, J Sekiguchi42, Agnieszka Sekowska3, Simone J. Séror35, Pascale Serror5, Byung Sik Shin14, Blazenka Soldo32, Guillaume Belbis5, Eliana M.C. Tacconi4, Toshiyuki Takagi43, H. Takahashi27, Ken‐Ichi Takemaru29, Michio Takeuchi29, Akiko Tamakoshi23, Toshihiro Tanaka44, P. Terpstra11, A. Tognoni26, Valentina Tosato12, Shigeki Uchiyama42, M. Vandenbol40, F. Vannier35, A Vassarotti45, Alain Viari36, R. Wambutt46, E. Wedler46, H. W. Wedler46, Thomas Weitzenegger39, P. Winters13, Anil Wipat10, Hiroki Yamamoto42, K Yamane23, Kenji Yasumoto27, K. Yata21, Ken‐ichi Yoshida22, Hirofumi Yoshikawa27, Emmanuelle Zumstein5
1Institut Pasteur, Unité de Biochimie Microbienne, 25 rue du Docteur Roux, Paris, 75724, Cedex 15, France
2Nara Institute of Science and Technology, Graduate School of Biological Sciences, Ikoma, 630-01, Nara, Japan
3Institut Pasteur, Unité de Régulation de l'Expression Génétique, 28 rue du Docteur Roux, Paris, 75724, Cedex 15, France
4Dipartimento di Genetica e Microbiologia, Universita' di Pavia, Via Abbiategrasso 207, 27100 Pavia, Italy
5INRA, Génétique Microbienne, Domaine de Vilvert, 78352, Jouy-en-Josas Cedex, France
6Institut für Mikrobiologie, J. W. Goethe-Universität, Marie Curie Strasse 9, 60439, Frankfurt/Maine, Germany
7Institut für Genetik und Mikrobiologie, Humboldt Universität, Chausseestrasse 17, D-10115, Berlin, Germany
8Centre d’Ingénierie des Protéines, Université de Liège, Institut de Chimie B6, Sart Tilman, B-4000 Liège (Belgium)
9QIAGEN GmbH, Max-Volmer-Strasse 4, D-40724, Hilden, Germany
10Department of Microbiological, Immunological and Virological Sciences, The Medical School, University of Newcastle, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
11Department of Genetics, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
12ICGEB, AREA Science Park, Padriciano 99, I-34012, Trieste, Italy
13Genencor International, 925 Page Mill Road, Palo Alto, 94304-1013, California, USA
14Applied Microbiology Research Division, Bacterial Molecular Genetics Research Unit, KRIBB, PO Box 115, Yusong, 305-600, Taejon, Korea
15INRIA, Domaine de Voluceau, PB 105, Le Chesnay, 78153, Cedex, France
16Department of Food Macromolecular Science, Institute of Food Research, Reading Laboratory, Earley Gate, Whiteknights Road, RG6 6BZ, Reading, UK
17Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
18Laboratoire de Chimie Bactérienne, CNRS BP 71, 31 Chemin Joseph Aiguier, Marseille, 13402, Cedex 09, France
19Department of Genetics, Trinity College, Lincoln Place Gate, 2, Dublin, Republic of Ireland
20Department of Biochemistry and Genetics, The Medical School, University of Newcastle, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
21Radioisotope Center, National Insitute of Genetics, Mishima, 411, Shizuoka-ken, Japan
22Department of Biotechnology, Faculty of Engineering, Fukuyama University, Higashimura-cho, Fukuyama-shi, 729-02, Hiroshima, Japan
23Institute of Biological Sciences, Tsukuba University, Tsuiuba-shi, 305, Ibaraki, Japan
24Faculté des Sciences Agronomiques, Unité de Biochimie Physiologique, Université Catholique de Louvain, Place Croix du Sud, 2-20 B-1348, Louvain-la-Neuve, Belgium
25Novo Nordisk Biotech, 1445 Drew Avenue, Davis, 95616-4880, California, USA
26Eniricerche, Via Maritano 26, San Donato Milanese, Milan, 20097, Italy
27Institute of Molecular and Cellular Biology, The University of Tokyo, Bunkyo-ku, 113, Tokyo, Japan
28Laboratoire Génome et Informatique, Université de Versailles, Bâtiment Buffon, 45 Avenue des États-Unis, 78035, Versailles Cedex, France
29Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183, Tokyo, Japan
30Mitsubishi Kasei Institute of Life Sciences, 11 Minamyiooa, Machida-shi, 194, Tokyo, Japan
31Institut Pasteur, Service d'Informatique Scientifique, 28 rue du Docteur Roux, Paris, 75724, Cedex 15, France
32Institut de Génétique et Biologie Microbiennes, Université de Lausanne, 19 rue César Roux, 1005, Lausanne, Switzerland
33Department of Molecular Microbiology, MBW/BCA, Faculty of Biology, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081, HV Amsterdam, The Netherlands
34Chongju University College of Science and Engineering, Chongju City, Korea
35Institut de Génétique et Microbiologie, Université Paris Sud, URA CNRS 2225, Université Paris XI–Bâtiment 409, 91405, Orsay Cedex, France
36Atelier de BioInformatique, Université Paris VI, 12 rue Cuvier, 75005, Paris, France
37Centro Nacional de Biotecnologia (CSIC), Campus Universidad Autonoma, Cantoblanco, 28049, Madrid, Spain
38National Institute of Basic Biology, 38 Nishigounaka, Myoudaiji-chou, 444, Okazaki, Japan
39Gesellschaft für Analyse-Technik und Consulting mbH, Fritz-Arnold Straβe 23, D-78467, Konstanz, Germany
40Department of Microbiology, Faculty of Agronomy, 6 Avenue du Maréchal Juin, B-5030, Gembloux, Belgium
41Biotech Research, BMF, Wilhelmsfeld, Klingelstrasse 35, D-69434, Hirschhorn, Germany
42Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University 3-15-1, Tokida, Ueda-shi, 386, Nagano, Japan
43Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108, Tokyo, Japan
44Department of Marine Science, School of Marine Science and Technology, Tokai University, 3-20-1 Orido Shimizu, 424, Shizuoka, Japan
45European Commission, DG XII-E-1, SDME 8/78, Rue de la Loi 200, B-1049, Brussels, Belgium
46AGOWAmbH, Glienicker Weg 185, 12489, Berlin, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

Fraser, C. M. et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 (1995).

Kaneko, T. et al. Sequence analysis of the genome of the unicellular Cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3, 109–136 (1996).

Bult, C. J. et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073 (1996).

Himmelreich, R. et al. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24, 4420–4449 (1996).

Goffeau, A. et al. The yeast genome directory. Nature 387, 5–105 (1997).

Tomb, J.-F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547 (1997).

Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462 (1997).

Kunst, F., Vassarotti, A. & Danchin, A. Organization of the European Bacillus subtilis genome sequencing project. Microbiology 389, 84–87 (1995).

Ogasawara, N. & Yoshikawa, H. The systematic sequencing of the Bacillus subtilis genome in Japan. Microbiology 142, 2993–2994 (1996).

Harwood, C. R. Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends Biotechnol. 10, 247–256 (1992).

Stragier, P. & Losick, R. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet. 30, 297–341 (1996).

Solomon, J. M. & Grossman, A. D. Who's competent and when: regulation of natural genetic competence in bacteria. Trends Genet. 12, 150–155 (1996).

Moszer, I., Kunst, F. & Danchin, A. The European Bacillus subtilis genome sequencing project: current status and accessibility of the data from a new World Wide Web site. Microbiology 142, 2987–2991 (1996).

Franks, A. H., Griffiths, A. A. & Wake, R. G. Identification and characterization of new DNA replication terminators in Bacillus subtilis. Mol. Microbiol. 17, 13–23 (1995).

Lobry, J. R. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol. Evol. 13, 660–665 (1996).

Hénaut, A. & Danchin, A. in Escherichia coli and Salmonella: Cellular and Molecular Biology (eds Neidhardt, F. et al.) 2047–2066 (ASM, Washington DC, (1996)).

Nussinov, R. The universal dinucleotide asymmetry rules in DNA and amino acid codon choice. Nucleic Acids Res. 17, 237–244 (1981).

Karlin, S., Burge, C. & Campbell, A. M. Statistical analyses of counts and distributions of restriction sites in DNA sequences. Nucleic Acids Res. 20, 1363–1370 (1992).

Burge, C., Campbell, A. M. & Karlin, S. Over- and under-representation of short oligonucleotides in DNA sequences. Proc. Natl Acad. Sci. USA 89, 1358–1362 (1992).

Kasahara, Y., Nakai, S. & Ogasawara, H. Sequen analysis of the 36-kb region between gntZ and trnY genes of Bacillus subtilis genome. DNA Res. 4, 155–159 (1997).

Presecan, E. et al. The Bacillus subtilis genome from gerBC (311°) to licR (334°). Microbiology 143, 3313–3328 (1997).

Burkholder, P. R. & Giles, N. H. Induced biochemical mutations in Bacillus subtilis. Am. J. Bot. 33, 345–348 (1947).

Daniels, D. L., Plunkett, G. II, Burland, V. & Blattner, F. R. Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. Science 257, 771–778 (1992).

Wu, L. J. & Errington, J. Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division. Science 264, 572–575 (1994).

Itaya, M. Stability and asymmetric replication of the Bacillus subtilis 168 chromosome structure. J. Bacteriol. 175, 741–749 (1993).

Billoud, B., Kontic, M. & Viari, A. Palingol: a declarative programming language to describe nucleic acids' secondary structures and to scan sequence database. Nucleic Acids Res. 24, 1395–1403 (1996).

Fichant, G. A. & Burks, C. Identifying potential tRNA genes in genomic DNA sequences. J. Mol. Biol. 220, 659–671 (1991).

d'Aubenton Carafa, Y., Brody, E. & Thermes, C. Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. J. Mol. Biol. 216, 835–858 (1990).

Stock, J. B., Surette, M. G., Levitt, M. & Park, P. in Two-Component Signal Transduction (eds Hoch, J. A. & Silhavy, T. J.) 25–51 (ASM, Washington DC, (1995)).

Mizuno, T. Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res. 4, 161–168 (1997).

Perego, M., Glaser, P. & Hoch, J. A. Aspartyl-phosphate phosphatases deactivate the response regulator components of the sporulation signal transduction system in Bacillus subtilis. Mol. Microbiol. 19, 1151–1157 (1996).

Tjalsma, H. et al. Bacillus subtilis contains four closely related type I signal peptidases with overlapping substrate specificities: constitutive and temporally controlled expression of different sip genes. J. Biol. Chem. 272, 25983–25992 (1997).

Danchin, A. Comparison between the Escherichia coli and Bacillus subtilis genomes suggests that a major function of polynucleotide phosphorylase is to synthesize CDP. DNA Res. 4, 9–18 (1997).

Suutari, M. & Laakso, S. Unsaturated and branched chain-fatty acids in temperature adaptation of Bacillus subtilis and Bacillus megaterium. Biochim. Biophys. Acta 1126, 119–124 (1992).

Luttinger, A., Hahn, J. & Dubnau, D. Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis. Mol. Microbiol. 19, 343–356 (1996).

Landès, C., Hénaut, A. & Risler, J.-L. Acomparison of several similarity indices used in the classification of protein sequences: a multivariate analysis. Nucleic Acids Res. 20, 3631–3637 (1992).

Glémet, E. & Codani, J.-J. LASSAP, a LArge Scale Sequence compArison Package. Comput. Appl. Biosci. 13, 137–143 (1997).

Médigue, C., Moszer, I., Viari, A. & Danchin, A. Analysis of a Bacillus subtilis genome fragment using a co-operative computer system prototype. Gene 165, GC37–GC51 (1995).

Krogh, S., O'Reilly, M., Nolan, N. & Devine, K. M. The phage-like element PBSX and part of the skin element, which are resident at different locations on the Bacillus subtilis chromosome, are highly homologous. Microbiology 142, 2031–2040 (1996).

Daniel, R. A., Drake, S., Buchanan, C. E., Scholle, R. & Errington, J. The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. J. Mol. Biol. 235, 209–220 (1994).

Anagnostopoulos, C. & Spizizen, J. Requirements for transformation in Bacillus subtilis. J. Bacteriol. 81, 741–746 (1961).

Azevedo, V. et al. An ordered collection of Bacillus subtilis DNA segments cloned in yeast artificial chromosomes. Proc. Natl Acad. Sci. USA 90, 6047–6051 (1993).

Glaser, P. et al. Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333°. Mol. Microbiol. 10, 371–384 (1993).

Ogasawara, N., Nakai, S. & Yoshikawa, H. Systematic sequencing of the 180 kilobase region of the Bacillus subtilis chromosome containing the replication origin. DNA Res. 1, 1–14 (1994).

Sorokin, A. et al. Anew approach using multiplex long accurate PCR and yeast artificial chromomes for bacterial chromosome mapping and sequencing. Genome Res. 6, 448–453 (1996).

Borodovsky, M. & McIninch, J. GENMARK: parallel gene recognition for both DNA strands. Comput. Chem. 17, 123–133 (1993).

Fichant, G. A. & Quentin, Y. Aframeshift error detection algorithm for DNA sequencing projects. Nucleic Acids Res. 23, 2900–2908 (1995).

Moszer, I., Glaser, P. & Danchin, A. SubtiList: a relational database for the Bacillus subtilis genome. Microbiology 141, 261–268 (1995).