The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aita C., Recous S. and Angers D.A. 1997. Short-term kinetics of residual wheat straw C and N under field conditions: characterization by 13C 15N tracing and soil particle size fractionation. Eur. J. Soil Sci. 48: 283–294.
Amato M., Ladd J.N., Ellington A., Ford G., Mahoney J.E., Taylor A.C. et al. 1987. Decomposition of plant materials in Australian soils. IV Decomposition in situ of 14C-and 15N-labelled legumes and wheat materials in a range of Southern Australian soils. Aust. J. Soil Res. 25: 95–105.
Anil L., Park R.H.P. and Miller F.A. 1998. Temperate intercropping of cereals for forage: a review of the potential for growth and utilization with particular reference to the UK. Grass Forage Sci. 53: 301–317.
Armstrong E.L., Heenan D.P., Pate J.S. and Unkovich M.J. 1997. Nitrogen benefits of lupins, field pea, and chickpea to wheat production in south-eastern Australia. Aust. J. Agric. Res. 48: 39–47.
Bergersen F.J., Turner G.L., Amarger N., Mariotti F. and Mariotti A. 1986. Strain of Rhozobium lupini determines natural abundance of 15N in root nodules of Lupinus Spp. Soil Biol. Biochem. 18: 97–101.
Cadisch G. and Giller K.E. 1997. Driven by nature: a sense of arrival or departure? In: Cadisch G. and Giller K.E. (eds), Driven by Nature – Plant Litter Quality and Decomposition. CAB International, Wallingford, UK, pp. 393–400.
Carr P.M., Martin G.B., Caton J.S. and Poland W.W. 1998. Forage and nitrogen yield of barley-pea and oat-pea intercrops. Agron. J. 90: 79–84.
Carruthers K., Prithiviraj B., Fe Q., Cloutier D., Martin R.C. and Smith D.L. 2000. Intercropping corn with soybean, lupin and forages: yield component responses. Eur. J. Agron. 12: 103–115.
De Wit C.T. and Van den Bergh J.P. 1965. Competition between herbage plants. Neth. J. Agric. Sci. 13: 212–221.
Ehaliotis C., Cadisch G. and Giller K.E. 1998. Substrate amendments can alter microbial dynamics and N availability from maize residues to subsequent crops. Soil Biol. Biochem. 30: 1281–1292.
Evans J., Fettell N.A., Coventry D.R., O'Connor G.E., Walsgott D.N., Mahoney J. et al. 1991. Wheat responses after temperate crop legumes in south-eastern Australia. Aust. J. Agric. Res. 42: 31–43.
Evans J., Fettell N.A., Oconnor G.E., Carpenter D.J. and Chalk P.M. 1997. Effect of soil treatment with cereal straw and method of crop establishment on field pea (Pisum sativum L) N2 fixation. Proceedings of the Twenty–Seventh Annual Conference of the Agronomy Society of New Zealand 24: 87–95.
Evans J., O'Connor G.E., Turner G.L., Coventry D.R., Fettell N.A., Mahoney J. et al. 1989. N fixation and its value to soil N2 increase in lupin, field pea and other legumes in south-eastern Australia. Aust. J. Agric. Res. 40: 791–805.
Handayanto E., Giller K.E. and Cadisch G. 1997. Regulating N release from legume tree prunings by mixing residues of different quality. Soil Biol. Biochem. 29: 1417–1426.
Hauggaard-Nielsen H., Ambus P. and Jensen E.S. 2001a. Interspecific competition, N use and interference with weeds in pea–barley intercropping. Field Crops Res. 70: 101–109.
Hauggaard-Nielsen H., Ambus P. and Jensen E.S. 2001b. Temporal and spatial distribution of roots and competition for nitrogen in pea–barley intercrops – a field study employing 32P technique. Plant Soil 236: 63–74.
Herridge D.F., Marcellos H., Felton W.L., Turner G.L. and Peoples M.B. 1995. Chickpea increases soil-N fertility in cereal systems through nitrate sparing and N2 fixation. Soil Biol. Biochem. 27: 545–551.
Jakobsen I. and Nielsen N.E. 1983.Vesicular-arbuscular mycorrhiza in field grown crops. I. Mycorrhizal infection in cereals and peas at various times and soil depths. New Phytol. 93: 401–413.
Jarvis S.C. 1996. Future trends in nitrogen research. Plant Soil 181: 47–56.
Jensen A. 1985. Evaluation of VA-mycorrhiza as a parameter in breeding field pea. In: Molina R. (ed.), Proceedings of the 6th North American Conference on Mycorrhiza, Oregon, 1984. Forest Research Laboratory, Oregon, USA, p. 258.
Jensen E.S. and Haahr V. 1990. The effect of pea cultivation on succeeding winter cereals and winter oilseed rape nitrogen nutrition. Appl. Agric. Res. 5: 102–107.
Jensen E.S. 1994. Availability of nitrogen in 15N-labelled mature pea residues to subsequent crops in the field. Soil Biol. Biochem. 26: 465–472.
Jensen E.S. 1996a. Grain yield, symbiotic N fixation and interspecific competition for inorganic N2 in pea–barley intercrops. Plant Soil 182: 25–38.
Jensen E.S. 1996b. Compared cycling in a soil-plant system of pea and barley residue nitrogen. Plant Soil 182: 13–23.
Jensen E.S. 1997a. The role of grain legume N2 fixation in the nitrogen cycling of temperate cropping systems, D.Sc. Thesis Risø-R-885. Risø National Laboratory, Roskilde, Denmark.
Jensen E.S. 1997b. Nitrogen immobilization and mineralization during initial decomposition of 15N-labelled pea and barley residues. Biol. Fertil. Soils 24: 29–44.
Mahon J.D. and Child J.J. 1979. Growth response of inoculated peas (Pisum sativum) to combined N. Can. J. Bot. 57: 1687–1693.
Mortensen L. and Engvild K.C. 1995. Effects of ozone on C-14 translocation velocity and growth of spring wheat (Triticum aestivum L) exposed in open-top chambers. Environ. Pol. 87: 135–140.
Ofori F. and Stern W.R. 1987. Cereal-legume intercropping systems. Adv. Agron. 41: 41–90.
Peoples M.B., Gault R.R., Scammell G.J., Dear B.S., Virgona J., Sandral G.A. et al. 1998. Effect of pasture management on the contributions of fixed N to the N economy of ley-farming systems. Aust. J. Agric. Res. 49: 459–474.
Peoples M.B., Ladha J.K. and Herridge D.F. 1995. Enhancing legume N2 fixation through plant and soil management. Plant Soil 174: 83–101.
Recous S., Robin D., Darwis D. and Mary B. 1995. Soil inorganic N availability: effect on maize residue decomposition. Soil Biol. Biochem. 27: 1529–1538.
SAS 1990. SAS Procedure Guide,Version 6. 3rd edn. SAS Institute, Cary, North Carolina, 705 pp.
Shearer G. and Kohl D.H. 1986. Nitrogen fixation in field settings: estimations based on natural 15N abundance. Aust. J. Plant Phys. 13: 699–756.
Thomsen A. and Thomsen H. 1994. Automated TDR measurements: Control box for Tektronix TSS 45 relay scanners. Report 10. Danish Institute of Plant and Soil Science, Tjele, Denmark, 32 pp.
Thomsen A. 1994. Program autotdr for making automated TDR measurements of soil water content. Users guide, Version 01. Report 38. Danish Institute of Plant and Soil Science, Tjele, Denmark, 29 pp.
Unkovich M.J. and Pate J.S. 2000. An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes. Field Crops Res. 65: 211–228.
Thorup-Kristensen K. 1994. The effect of nitrogen catch crop species on the nitrogen nutrition of succeeding crops. Fert. Res. 3: 227–234.
Yoneyama T., Fujita K., Yoshida T., Matsumoto T. and Kambayashi I. 1986. Variation in natural abundance of 15N among plant parts and in 15N/ 14N fractionation during N2 fixation in legume rhizobia symbiotic system. Plant Cell Physiol. 27: 791–799.