The comparative investigation on redox property and second-order nonlinear response of Keggin-type α-[PM12O39NPh]3− (M = W and Mo) and Mo6NPh
Tóm tắt
Từ khóa
Tài liệu tham khảo
Baker L C W, Glick D C. Present general status of understanding of heteropoly electrolytes and a tracing of some major highlights in the history of their elucidation. Chem Rev, 1998, 98(1): 3–49
Pope M T, Müller A. Polyoxometalate chemistry-an old field with new dimensions in several disciplines. Angew Chem Int Ed Engl, 1991, 30(1): 34–48
Jeannin Y P. The nomenclature of polyoxometalates: How to connect a name and a structure. Chem ReV, 1998, 98(1): 51–76
Coronado E, Gömez-García C J. Polyoxometalate-based molecular materials. Chem ReV, 1998, 98(1): 273–296
Müller A, Peters F, Pope M T, et al. Polyoxometalates: very large clusters-nanoscale magnets. Chem Rev, 1998, 98(1): 239–272
Sadakane M, E. Steckhan. Electrochemical properties of polyoxometalates as electrocatalysts. Chem Rev, 1998, 98(1): 219–238
Peng Z H. Rational synthesis of covalently bonded organic-inorganic hybrids. Angew Chem Int Ed, 2004, 43(8): 930–935
Du Y, Rheingold A L, Maatta E A. A polyoxometalate incorporating an organoimido ligand-preparation and structure of [Mo5O18 (MoNC6H4CH3)]2−. J Am Chem Soc, 1992, 114(1): 345–346
Strong J B, Ostrander R, Rheingold A L, et al. Ensheathing a polyoxometalate-convenient systematic introduction of organoimido ligands at terminal oxo sites in [Mo6O19]2−. J Am Chem Soc, 1994, 116(8): 3601–3602
Stark J L, Rheingold A L, Maatta E A. Polyoxometalate clusters as building-blocks-preparation and structure of bis(hexamolybdate) complexes covalently bridged by organodiimido ligands. J Chem Soc Chem Commun. 1995, (11): 1165–1166
Strong J B, Haggerty B S, Rheingold A L, et al. A superoctahedral complex derived from a polyoxometalate: The hexakis (arylimido) hexamolybdate anion [Mo6(NAr)6O13H]−. Chem Commun, 1997, (12): 1137–1138
Strong J B, Yap G P, Ostrander R., et al. A new class of functionalized polyoxometalates: Synthetic, structural, spectroscopic, and electrochemical studies of organoimido derivatives of [Mo6O19]2−. J Am Chem Soc, 2000, 122(4): 639–649
Xu B B, Wei Y G, Barnes C L, et al. Hybrid molecular materials based on covalently linked inorganic polyoxometalates and organic conjugated systems. Angew Chem Int Ed, 2001, 40(12): 2290–2292
Wei Y G, Xu B B, Barnes C L, et al. An efficient and convenient reaction protocol to organoimido derivatives of polyoxometalates. J Am Chem Soc, 2001, 123(17): 4083–4084
Lu M, Wei Y G, Xu B B, et al. Hybrid molecular dumbbells: Bridging polyoxometalate clusters with an organic pi-conjugated rod. Angew Chem Int Ed, 2002, 41(9): 1566–1568
Xu B B, Peng Z H, Wei Y G, et al. Polyoxometalates covalently bonded with terpyridine ligands. Chem Commun, 2003, (20): 2562–2563
Xu B B, Lu M, Kang J, et al. Synthesis and optical properties of conjugated polymers containing polyoxometalate clusters as sidechain pendants. Chem Mater, 2005, 17(11): 2841–2851
Proust A, Thouvenot R, Chaussade M, et al. Phenylimido derivatives of [Mo6O19]2−-syntheses, X-ray structures, vibrational, electrochemical, 95Mo and 14N NMR studies. Inorg Chim Acta, 1994, 224(1–2): 81–95
Xia Y, Wei Y G, Wang Y, et al. A kinetically controlled trans bifunctionalized organoimido derivative of the Lindqvist-type hexamolybdate: Synthesis, spectroscopic characterization, and crystal structure of (n-Bu4N)2{trans-[Mo6O17(NAr)2]} (Ar=2,6-dimethylphenyl). Inorg Chem, 2005, 44(26): 9823–9828
Li Q, Wu P F, Xia Y, et al. Synthesis, Spectroscopic studies and crystal structure of a polyoxoanion cluster incorporating para-bromophenylimido ligand, (Bu4N)2[Mo6O18(NC6H4Br-p)]. J Organomet Chem, 2006, 691(6): 1223–1228
Xiao Z C, Zhu Y, Wei Y G, et al. Synthesis and characteristic of a new arylimido derivative of hexamolybdate with remote strong electrodonating group (Bu4N)2[Mo6O18NC6H4N(CH3)2-p]. Inorg Chem Commun, 2006, 9(4): 400–402
Kwen H, Tomlinson S, Maatta E A, et al. Functionalized heteropolyanions: High-valent metal nitrido fragments incorporated into a Keggin polyoxometalate structure. Chem Commun, 2002, (24): 2970–2971
Dablemont C, Proust A, Thouvenot R, et al. Functionalization of polyoxometalates: From Lindqvist to Keggin derivatives. 1. Synthesis, solution studies, and spectroscopic and ESI mass spectrometry characterization of the rhenium phenylimido tungstophosphate [PW11O39 {ReNC6H5}]4−. Inorg Chem, 2004, 43(11): 3514–3520
Duhacek J C, Duncan D C. Phenylimido functionalization of α-[PW12-O40]3−. Inorg Chem (Communication), 2007, 46(18): 7253–7255
Rohmer M M, Bénard M, Blaudeau J P, et al. From Lindqvist and Keggin ions to electronically inverse hosts: Ab initio modelling of the structure and reactivity of polyoxometalates. Coord Chem Rev, 1998, 178–180: 1019–1049
Poblet J M, López X, Bo C. Ab initio and DFT modelling of complex materials: Towards the understanding of the electronic and magnetic properties of polyoxometalates. Chem Soc Rev, 2003, 32: 297–308
Kempt J Y, Rohmer M M, Poblet J M, et al. Relative basicities of the oxygen sites in [V10O28]6−-an analysis of the abinitio determined distributions of the electrostatic potential and of the laplacian of charge-density. J Am Chem Soc, 1992, 114(4): 1136–1146
Rohmer M M, Bénard M. An interpretation of the structure of the inclusion complexes [RCN⊂(V12O32)4−] (R=CH3, C6H5) from electrostatic potentials. J Am Chem Soc, 1994, 116(15): 6959–6960
Rohmer M M, Devemy J, Wiest R, et al. Ab initio modeling of the endohedral reactivity of polyoxometallates. 1. Host-guest interactions in [RCN⊂(V12O32)4−] (R=H, CH3, C6H5). J Am Chem Soc, 1996, 118(51): 13007–13014
Maestre J M, Sarasa J P, Bo C, et al. Ab initio study of the relative basicity of the external oxygen sites in M2W4O194− (M = Nb and V). Inorg Chem, 1998, 37(12): 3071–3077
Maestre J M, López X, Bo C, et al. Electronic and magnetic properties of alpha-keggin anions: A DFT study of [XM12O40]n−, (M = W, Mo; X = AlIII, SiIV, PV, FeIII, CoII, CoIII) and [SiM11VO40]m− (M = Mo and W). J Am Chem Soc, 2001, 123(16): 3749–3758
López X, Maestre J M, Bo C, et al. Electronic properties of polyoxometalates: A DFT study of α/β-[XM12O40]n− relative stability (M = W, Mo and X a main group element). J Am Chem Soc, 2001, 123(39): 9571–9576
López X, Bo C, Poblet J M. Electronic properties of polyoxometalates: Electron and proton affinity of mixed-addenda Keggin and Wells-Dawson anions. J Am Chem Soc, 2002, 124(42): 12574–12582
López X, Nieto-Draghi C, Bo C, et al. Polyoxometalates in solution: Molecular dynamics simulations on the α-PW12O403− keggin anion in aqueous media. J Phys Chem A, 2005, 109(6): 1216–1222
Bridgeman A J, Cavigliasso G. Molecular and electronic structures of six-coordinate W complexes and polyanions containing tri-oxo groups. Polyhedron, 2001, 20(26–27): 3101–3111
Bridgeman A J, Cavigliasso G. Electronic structure of Mo and W [M7O24]6− isopolyanions. J Chem Soc Dalton Trans, 2002, (10): 2244–2249
Bridgeman A J. Density functional study of the vibrational frequencies of α-Keggin heteropolyanions. Chem Phys, 2003, 287(1–2): 55–69
Bridgeman A J, Cavigliasso G. A comparative investigation of structure and bonding in Mo and W [TeM6O24]6− and [PM12O40]3− heteropolyanions. J Phys Chem. A, 2003, 107(34): 6613–6621
Bridgeman A J. Computational study of the vibrational spectra of α- and β-Keggin polyoxometalates. Chem Eur J, 2004, 10(12): 2935–2941
Borshch S A. Electron distribution in the two-electron reduced isopolytungstate [W10O32]6−. Inorg Chem, 1998, 37(12): 3116–3118
Duclusand H, Borshch S A. Iron-molybdenum electron delocalization in substituted Keggin polyoxoanions. Inorg Chem, 1999, 38(15): 3489–3493
Duclusand H, Borshch S A. Electron delocalization and magnetic state of doubly-reduced polyoxometalates. J Am Chem Soc, 2001, 123(12): 2825–2829
Guan W, Yan L K, Su Z M, et al. Electronic properties and stability of dititaniumIV substituted α-keggin polyoxotungstate with heteroatom phosphorus by DFT. Inorg Chem, 2005, 44(1): 100–107
Yan L K, Dou Z, Guan W, et al. A DFT Study on the Electronic and Redox Properties of [PW11O39(ReN)]n− (n = 3, 4, 5) and [PW11O39−(OsN)]2−. Eur J Inorg Chem, 2006, (24): 5126–5129
Yan L K, Su Z M, Guan W, et al. Why does disubstituted hexamolybdate with arylimido prefer to form an orthogonal derivative? Analysis of stability, bonding character, and electronic properties on molybdate derivatives by density functional theory (DFT) study. J Phys Chem B, 2004, 108(45): 17337–17343
Yan L K, Yang G C, Guan W, et al. Density functional theory study on the first hyperpolarizabilities of organoimido derivatives of hexamolybdates. J Phys Chem B, 2005, 109(47): 22332–22336
Yang G C, Guan W, Yan L K, et al. Theoretical study on the electronic spectrum and the origin of remarkably large third-order nonlinear optical properties of organoimide derivatives of hexamolybdates. J Phys Chem B, 2006, 110(46): 23092–23098
Brédas J L, Beljonne D, Coropceanu V, et al. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: A molecular picture. Chem Rev, 2004, 104(11): 4971–5003
Carey D M L, Muñoz-Castro A, Bustos C J, et al. π-donor/acceptor effect on lindqvist type polyoxomolibdates because of various multiple-bonded nitrogenous ligands. J Phys Chem A, 2007, 111(28): 6563–6567
te Velde G, Bickelhaupt F M, Baerends E J, et al. ‘Chemistry with ADF’, J Comput Chem, 2001, 22(9): 931–967
Fonseca Guerra C, Snijders J G, te Velde G, et al. Towards an order-N DFT method. Theor Chem Acc, 1998, 99(6): 391–403
ADF2006.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com
van Lenthe E, Baerends E J, Snijders J G. Relativistic regular 2-component Hamiltonians. J Chem Phys, 1993, 99(6): 4597–4610
van Lenthe E, Baerends E J, Snijders J G. Relativistic total-energy using regular approximations. J Chem Phys, 1994, 101(11): 9783–9792
van Lenthe E, Ehlers A E, Baerends E J. Geometry optimization in the zero order regular approximation for relativistic effects. J Chem Phys, 1999, 110(18): 8943–8953
van Lenthe E, Snijders J G, Baerends E J. The zero-order regular approximation for relativistic effects: The effect of spin-orbit coupling in closed shell molecules. J Chem Phys, 1996, 105(15): 6505–6516
van Lenthe E, van Leeuwen R, Baerends E J, et al. Relativistic regular two-component Hamiltonians. Int J Quantum Chem, 1996, 57(3): 281–293
Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin-density calculations-a critical analysis. Can J Phys, 1980, 58(8): 1200–1211
Becke A D. Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A, 1988, 38(6): 3098–3100
Perdew J P. Density-functional approximation for the correlation-energy of the inhomogeneous electron-gas. Phys Rev B, 1986, 33(12): 8822–8824
Klamt A, Schüürmann G. Cosmo-a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2, 1993, (5): 799–805
Klamt A. Conductor-like screening model for real solvents-a new approach to the quantitative calculation of solvation phenomena. J Phys Chem, 1995, 99(7): 2224–2235
Klamt A, Jones V. Treatment of the outlying charge in continuum solvation models. J Chem Phys, 1996, 105(22): 9972–9981
Pye C C, Ziegler T. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package. Theor Chem Acc, 1999, 101(6): 396–408
Hu S Z, Zhou Z H, Tsai K R. Average van der Waals radii of atoms in crystals. Acta Phys-Chim Sin, 2003, 19(11): 1073–1077
van Gisbergen S J A, Snijders J G, Baerends E J, et al. Implementation of time-dependent density functional response equations. Comput Phys Commun, 1999, 118(2–3): 119–138
van Leeuwen R, Baerends E J. Exchange-correlation potential with correct asymptotic-behavior. Phys Rev A, 1994, 49(4): 2421–2431
Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford CT, 2004
Lu X M, Liu B, Sarula, et al. Synthesis, crystal structure and NMR of [Na(DB18C6)(CH3CN)]3[α-PW12O40]. Polyhedron, 2005, 24(16–17): 2889–2893
Bi L H, Wang E B, Xu L, et al. Synthesis, properties and crystal structure of some polyoxometallates containing the tris (hydroxymethyl) aminomethane cation. Inorg Chim Acta, 2000, 305(2): 163–171
Reynolds C A, King P M, Richards W G. Computed redox potentials and the design of bioreductive agents. Nature, 1988, 334(6177): 80–82
Reynolds C A. Theoretical electrode-potentials and conformational energies of benzoquinones and naphthoquinones in aqueous-solution. J Am Chem Soc, 1990, 112(21): 7545–7551
Winget P, Weber E J, Cramer C J, et al. Computational electrochemistry: aqueous one-electron oxidation potentials for substituted anilines. Phys Chem Chem Phys, 2000, 2(6): 1231–1239
Andrieux C P, Pinson J. The standard redox potential of the phenyl radical/anion couple. J Am Chem Soc, 2003, 125(48): 14801–14806
Schmidt am Busch M, Knapp E W. One-electron reduction potential for oxygen-and sulfur-centered organic radicals in protic and aprotic solvents. J Am Chem Soc, 2005, 127(45): 15730–15737
Fu Y, Liu L, Yu H Z, et al. Quantum-chemical predictions of absolute standard redox potentials of diverse organic molecules and free radicals in acetonitrile. J Am Chem Soc, 2005, 127(19): 7227–7234
Fu Y, Liu L, Wang Y M, et al. Quantum-chemical predictions of redox potentials of organic anions in dimethyl sulfoxide and reevaluation of bond dissociation enthalpies measured by the electrochemical methods. J Phys Chem A, 2006, 110(17): 5874–5886
Namazian M, Coote M L. Accurate calculation of absolute one-electron redox potentials of some para-quinone derivatives in acetonitrile. J Phys Chem A, 2007, 111(30): 7227–7232
López X, Fernández J A, Poblet J M. Redox properties of polyoxometalates: new insights on the anion charge effect. Dalton Trans, 2006, (9): 1162–1167
Fernández J A, López X, Bo C, et al. Polyoxometalates with internal cavities: Redox activity, basicity, and cation encapsulation in [Xn+P5− W30O110](15−n) - Preyssler complexes, with X = Na+, Ca2+, Y3+, La3+, Ce3+, and Th4+. J Am Chem Soc, 2007, 129(40): 12244–12253
Romo S, Fernández J A, Maestre J M, et al. Density functional theory and ab initio study of electronic and electrochemistry properties of the tetranuclear sandwich complex [FeIII4(H2O)2(PW9O34)2]6−. Inorg Chem, 2007, 46(10): 4022–4027
Lewis A, Bumpus J A, Truhlar D G, et al. Molecular modeling of environmentally important processes: Reduction potentials. J Chem Educ, 2004, 81(4): 596–604
Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications; Wiley: New York, 2001
Oudar J L, Chemla D S. Hyperpolarizabilities of nitroanilines and their relations to excited-state dipole-moment. J Chem Phys, 1977, 66(6): 2664–2668