The comparative effects of nano and bulk size particles of CuO and ZnO on glycyrrhizin and phenolic compounds contents in Glycyrrhiza glabra L. seedlings
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bates, L., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.
Chang, Y. N., Zhang, M., Xia, L., Zhang, J., & Xing, G. (2012). The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials, 5, 2850–2871.
Cristina, B., & Constantin, D. (2011). The effect of copper sulphat on the production of flavonoids in Digitalis lanata cell cultures. Farmacia, 59, 113–118.
Diaz, J. G., Bernal, A., Pomar, F., & Merino, F. (2001). Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annum L.) seedlings in response to copper stress and its relation to lignification. Journal of Plant Science, 161, 179–188.
Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangon, E., Britt, D. W., Johnson, W. P., et al. (2012). CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14, 1125.
Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J., & Guo, H. (2011). TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme. Journal of Environmental Monitoring, 13(4), 822–828.
Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., & Yang, P. (2005). Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research, 105, 269–279.
Irani, M., Sarmadi, M., Bernard, F., Ebrahimi Pour, G. H., & Shaker Bazarnov, H. (2010). Leaves antimicrobial activity of Glycyrrhiza glabra L. Iranian Journal of Pharmaceutical Research, 9, 425–428.
Jeffry, H. W., Michael, M. J., Robert, A., & Martin, J. R. (1983). High performance liquid chromatographic determination of glycyrrhizin in licorice products. Journal of Agriculture Food Chemistry, 31, 387–389.
Kalidas, S., & Mark, W. (2004). A model for the role of the proline-linked pentose phosphate pathway in phenolic phytochemical biosynthesis and mechanism of action for human health and environmental applications. Asia Pacific Journal of Clinical Nutrition, 13, 1–24.
Krizek, D. T., Antonjuk, V. P., & Mirecki, R. M. (1998). Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cv. new red fire lettuce. Physiologia Plantarum, 10, 1–7.
Kasai Y., Kato, M., Aoyama, J., & Hyodo, H. (1998). Ethylene production and increase in 1-amino-cyclopropane-1-carboxylate oxidase activity during senescence of broccoli florets. Acta Horticulture, 464, 153–157.
Lavid, N. S., Yarden, O., & Tel-Or, E. (2001). The involvement of polyphenols and peroxidase acitivities in heavy metal accumulation by epidermal glands of waterlily (Nymphaeceaea). Planta, 212, 323–328.
Luthar, Z. (1992). Polyphenol classification and tannin content of buckwheat seeds (Fagopyrum esculentum Moench). Fagopyrum, 12, 36–42.
Menard, A., Drobne, D., & Jemec, A. (2011). Ecotoxicity of nanosized TiO2. Review of in vivo data. Environmental Pollution, 159, 677–684.
Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15, 523–530.
Mukhopadhyay, M., & Panja, P. (2008). A novel process for extractoion of naturals weetener from licorice (Glycyrrhiza glabra) roots. International Journal of Separation and Purification Technology, 63, 539–545.
Myung-Min, H., Trick, H. N., & Rajasheka, E. B. (2009). Secondary metabolism and antioxidant are involved in environmental adaptation and stress tolerance in lettuce. Plant Physiology, 166, 180–191.
Nasiri, Y., Salmasi, S., Nasrullahzadeh, Z., Najafi, N., & Ghassemi-Golezani, K. (2010). Effects of foliar application of micronutrients (Fe and Zn) on flower yield and essential oil of chamomile (Matricaria chamomilla L.). Medicinal Plants Research, 4, 1733–1737.
Nelson, N. (1944). Photometric adaptation of the somogyi method for determination of glucose. Biological Chemistry, 153, 375–380.
Prapatsorn, B., Prabhat, K., Boonthida, K., Sunandan, B., & Joydeep, D. (2011). Effects of zinc oxide nanoparticles on roots of rice Oryza Sativa L. International Conference on Environment and Bioscience, 21, 172–176.
Preeti, P., & Tripathi, A. K. (2011). Effect of heavy metals on morphological and biochemical characteristics of Albizia procera (Roxb.) benth seedlings. International Journal of Environmental Sciences, 1, 1009–1018.
Rastgoo, L., & Alemzadeh, A. (2011). Biochemical responses of Gouan (Aeluropus littoralis) to heavy metals stress. Australian Journal of Crop Science, 5, 375–383.
Remya, N., Saino, H. V., Baiju, G. N., Maekawa, T., Yoshida, Y., & Sakthi, K. D. (2010). Nanoparticulate material delivery to plants. Plant Science, 179, 154–163.
Ruffini-Castiglione, M., & Cremonini, R. (2009). Nanoparticles and higher plants. Caryologia, 62, 161–165.
Sakihama, Y., Cohen, M. F., Grace, S. C., & Yamasaki, H. (2002). Plant phenolic antioxidant and prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plants. Toxicology, 17, 67–80.
Shabani, L., Ehsanpour, A. A., Asghari, G., & Emami, J. (2009). Glycyrrhizin production by in vitro cultured Glycyrrhiza glabra elicited by methyl jasmonote and salicylic acid. Russian Journal of Plant Physiology, 56, 621–694.
Shibata, S. (2000). A drug over the millennia and pharmacognosy: Chemistry pharmacology of licorice. Pharmaceutical Society of Japan, 120, 849–862.
Soland, S. F., & Laima, S. K. (1999). Phenolics and cold tolerance of Brassica napus. Plant Agriculture, 1, 1–5.
Vinod, K., Awasthi, G., & Chauchan, P. K. (2012). Cu and Zn tolerance and responses of the biochemical and Physiochemical system of Wheat. Journal of Stress Physiology and Biochemistry, 8, 203–213.
Wanger, G. J. (1979). Content and vacuole/extra vacuole distribution of neutral sugars, free amino acids, and anthocyanins in protoplasts. Plant Physiology, 64, 88–93.
Winida, W., Hiroyuki, T., Yukihiro, S., & Waraporn, P. (2011). Methyl jasmonate elicitation enhances glycyrrhizin production in Glycyrrhiza inflata hairy roots cultures. Biosciences, 66, 423–428.
Yang, L., & Watts, D. J. (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicology Letters, 158, 122–132.
Zengin, F. K., & Munzurogiu, O. (2005). Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in Bean (Phaseolus Vulgaris L.) seedlings. Acta Biologica Cracoviensia Series Botanica, 47, 157–164.