The combined influence of surface modification, size distribution, and interaction time on the cytotoxicity of CdTe quantum dots in PANC-1 cells
Tóm tắt
Từ khóa
Tài liệu tham khảo
Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science, 2006, 311: 622-627.
Barreto JA, O'Malley W, Kubeil M, Graham B, Stephan H, Spiccia L. Nanomaterials: applications in cancer imaging and therapy. Adv Mater, 2011, 23: H18-H40.
Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307: 538-544.
Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater, 2005, 4: 435-446.
Jaiswal JK, Mattoussi H, Mauro JM, Simon SM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol, 2003, 21: 47-51.
Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge NF. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol, 2003, 21: 41-46.
Parak WJ, Boudreau R, Le Gros M, Gerion D, Zanchet D, Micheel CM, Williams SC. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater, 2002, 14: 882-885.
Sanjeev KM, Chansik P, Tae HY, Seog WR. Assessment of cytocompatibility of surface-modified CdSe/ZnSe quantum dots for BALB/3T3 fibroblast cells. Toxicol in Vitro, 2010, 24: 1070-1077.
Hanaki K, Momo A, Oku T, Komoto A, Maenosono S, Yamaguchi Y, Yamamoto K. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun, 2003, 302: 496-501.
Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett, 2004, 4: 2163-2169.
Lovric J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med, 2005, 83: 377-385.
Lovric J, Cho SJ, Winnik FM, Maysinger D. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol, 2005, 12: 1227-1234.
Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Persp, 2006, 114: 165-172.
Cho SJ, Maysinger D, Jain M, Roder B, Hackbarth S, Winnik FM. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir, 2007, 23: 1974-1980.
Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol, 2007, 127: 143-153.
Tang ML, Xing TR, Zeng J, Wang HL, Li CC, Yin ST, Yan D. Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons. Environ Health Persp, 2008, 116: 915-922.
Chang SQ, Dai YD, Kang B, Han W, Chen D. Gamma-radiation synthesis of silk fibroin coated CdSe quantum dots and their biocompatibility and photostability in living cells. J Nanosci Nanotechnol, 2009, 9: 5693-5700.
Chang SQ, Dai YD, Kang B, Han W, Mao L, Chen D. UV-enhanced cytotoxicity of thiol-capped CdTe quantum dots in human pancreatic carcinoma cells. Toxicol Lett, 2009, 188: 104-111.
Yan M, Zhang Y, Xu KD, Fu T, Qin HY, Zheng XX. An in vitro study of vascular endothelial toxicity of CdTe quantum dots. Toxicology, 2011, 282: 94-103.
Pelley JL, Daar AS, Saner MA. State of academic knowledge on toxicity and biological fate of quantum dots. Toxicol Sci, 2009, 112: 276-296.
