The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anderson DR, Hendrickson A (1974) Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol 13: 771–783
Başar Y, Grytz R (2004) Incompressibility at large strains and finite-element implementation. Acta Mechanica 168: 75–101
Boote C, Sorensen T, Coudrillier B, Myers K, Meek K, Quigley H, Nguyen T (2010) Posterior scleral collagen architecture in normal and glaucoma human eyes, as determined using wide-angle x-ray scattering. ARVO Abstract 51: 4900
Burgoyne CF, Downs JC, Bellezza A, Suh JF, Hart RT (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Progr Ret Eye Res 24: 39–73
Curtin BJ, Iwamoto T, Renaldo DP (1979) Normal and staphylomatous sclera of high myopia. Arch Ophthalmol 97(5): 912–915
Dongqi H, Zeqin R (1999) A biomathematical model for pressure-dependent lamina cribrosa behavior. J Biomech 32(6): 579–584
Downs JC, Suh JK, Thomas KA, Bellezza AJ, Burgoyne CF, Hart RT (2003) Viscoelastic characterization of peripapillary sclera: Material properties by quadrant in rabbit and monkey eyes. J Biom Eng 125: 124–131
Downs JC, Suh JK, Thomas KA, Bellezza AJ, Hart RT, Burgoyne CF (2005) Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes. Invest Ophthalmol Vis Sci 46: 540–546
Gaasterland D, Tanishima T, Kuwabara T (1978) Axoplasmic flow during chronic experimental glaucoma. 1. Light and electron microscopic studies of the monkey optic nervehead during development of glaucomatous cupping. Invest Ophthalmol Vis Sci 17(9): 838–846
Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6): 15–35
Girard MJA, Downs JC, Bottlang M, Burgoyne CF, Suh J-KF (2009a) Peripapillary and posterior scleral mechanics–Part II: Experimental and inverse finite element characterization. J Biom Eng 131(5): 051012
Girard MJA, Downs JC, Burgoyne CF, Suh J-KF (2009b) Peripapillary and posterior scleral mechanics—Part I: development of an anisotropic hyperelastic constitutive model. J Biom Eng 131(5): 051011
Girard MJA, Suh J-KF, Bottlang M, Burgoyne CF, Downs JC (2009) Scleral biomechanics in the aging monkey eye. Invest Ophthalmol Vis Sci 50(11): 5226–5237
Gleason RL, Humphrey JD (2004) A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. J Vasc Res 41(4): 352–363
Goldbaum MH, Jeng SY, Logemann R, Weinreb RN (1989) The extracellular matrix of the human optic nerve. Arch Ophthalmol 107(8): 1225–1231
Grytz R (2008) Computational modeling and remodeling of human eye tissues as biomechanical structures at multiple scales. Ph.D. thesis, Ruhr-University Bochum, Germany
Grytz R, Meschke G (2009) Constitutive modeling of crimped collagen fibrils in soft tissues. J Mech Behav Biomed Mat 2(5): 522– 533
Grytz R, Meschke G (2010) A computational remodeling approach to predict the physiological architecture of the collagen fibril network in corneo-scleral shells. Biomech Model Mechanobiol 9: 225–235
Hariton I, de Botton G, Gasser TC, Holzapfel GA (2007) Stress-driven collagen fiber remodeling in arterial walls. Biomech Model Mechanobiol 6(3): 163–175
Hernandez MR, Gong H (1996) Extracellular matrix of the trabecular meshwork and optic nerve head. In: Ritch R, Shields M, Krupin T (eds) The glaucomas: basic sciences, Ch 11. Mosby-Year Book, St Louis, pp 213–249
Hernandez MR, Luo XX, Igoe F, Neufeld AH (1987) Extracellular matrix of the human lamina cribrosa. Am J Ophthalmol 104: 567–576
Holzapfel G (2000) Nonlinear solid mechanics. A continuum approach for engineering. Wiley, Chichester
Itskov M, Aksel N (2004) A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int J Solids Struc 41: 3833–3848
Jonas J, Berenshtein E, Holbach L (2004) Lamina cribrosa thickness and spatial relationships between intraocular pressure and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci 45: 2660–2665
Lampert PW, Vogel MH, Zimmerman LE (1968) Pathology of the optic nerve in experimental acute glaucoma. Invest Ophthalmol 7: 199–213
Lanchares E, Calvo B, Cristóbal J, Doblaré M (2008) Finite element simulation of arcuates for astigmatism correction. J Biomech 41: 797–805
Marshall GE, Konstas AG, Lee WR (1993) Collagens in the aged human macular sclera. Curr Eye Res 12: 143–153
Minckler DS (1980) The organization of nerve fiber bundles in the primate optic nerve head. Arch Ophthalmol 98: 1630–1636
Minckler DS, Bunt AH, Johanson GW (1977) Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci 16: 426–441
Morrison JC, L’Hernault NL, Jerdan JA, Quigley HA (1989) Ultrastructural location of extracellular matrix components in the optic nerve head. Arch Ophthalmol 107(1): 123–129
Pandolfi A, Manganiello F (2006) A model for the human cornea: constitutive formulation and numerical analysis. Biomech Model Mechanobiol 5(4): 237–246
Pinsky PM, Datye DV (1991) A microstructurally-based finite element model of the incised human cornea. J Biomech 24(10): 907–922
Pinsky PM, van der Heide D, Chernyak D (2005) Computational modeling of the mechanical anisotropy in the cornea and sclera. J Cataract Refract Surg 31: 136–145
Quigley HA, Addicks EM (1980) Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Invest Ophthalmol Vis Sci 19(2): 137–152
Quigley HA, Addicks EM, Green WR, Maumenee AE (1981) Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol 99: 635–649
Quigley HA, Anderson DR (1976) The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol 15: 606–616
Quigley HA, Brown AE, Dorman-Pease ME (1991) Alterations in elastin of the optic nerve head in human and experimental glaucoma. Br J Ophthalmol 75: 552–557
Radius RL, Anderson DR (1979a) The course of axons through the retina and optic nerve head. Arch Ophthalmol 97: 1154–1158
Radius RL, Anderson DR (1979b) The histology of retinal nerve fiber layer bundles and bundle defects. Arch Ophthalmol 97: 948–950
Radius RL, Anderson DR (1981) Rapid axonal transport in primate optic nerve. Distribution of pressure-induced interruption. Arch Ophthalmol 99: 650–659
Ricken T, Schwarza A, Bluhm J (2007) A triphasic model of transversely isotropic biological tissue with applications to stress and biologically induced growth. Comput Mat Sc 39: 124–136
Roberts MD, Grau V, Grimm J, Reynaud J, Bellezza AJ, Burgoyne CF, Downs JC (2009) Remodeling of the connective tissue microarchitecture of the lamina cribrosa in early experimental glaucoma. Invest Ophthalmol Vis Sci 50(2): 681–690
Roberts MD, Liang Y, Sigal IA, Grimm J, Reynaud J, Bellezza A, Burgoyne CF, Downs JC (2010a) Correlation between local stress and strain and lamina cribrosa connective tissue volume fraction in normal monkey eyes. Invest Ophthalmol Vis Sci 51(1): 295–307
Roberts MD, Sigal IA, Liang Y, Burgoyne CF, Downs JC (2010b) Changes in the biomechanical response of the optic nerve head in early experimental glaucoma. Invest Ophthalmol Vis Sci (in press)
Schröder J, Neff P (2003) Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int J Solids Struc 40: 401–445
Sigal IA (2009) Interactions between geometry and mechanical properties on the optic nerve head. Invest Ophthalmol Vis Sci 50(6): 2785–2795
Sigal IA, Flanagan JG, Ethier CR (2005) Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 46(11): 4189–4199
Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2004) Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci 45: 4378–4387
Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2007) Predicted extension, compression and shearing of optic nerve head tissues. Exp Eye Res 85: 312–322
Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2009a) Modeling individual-specific human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of geometry. Biomech Model Mechanobiol 8(2): 85–98
Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2009b) Modeling individual-specific human optic nerve head biomechanics. Part II: influence of material properties. Biomech Model Mechanobiol 8(2): 99–109
Taber LA, Humphrey JD (2001) Stress-modulated growth, residual stress, and vascular heterogeneity. J Biom Eng 123: 528–535
Thale A, Tillmann B, Rochels R (1996) SEM studies of the collagen architecture of the human lamina cribrosa: Normal and pathological findings. Ophthalmologica 210: 142–147
Thornton IL, Dupps WJ, Roy AS, Krueger RR (2009) Biomechanical effects of intraocular pressure elevation on optic nerve/lamina cribrosa before and after peripapillary scleral collagen cross-linking. Invest Ophthalmol Vis Sci 50(3): 1227–1233
Vena P, Gastaldi D, Socci L, Pennati G (2008) An anisotropic model for tissue growth and remodeling during early development of cerebral aneurysms. Comput Mat Sc 43(3): 565–577
Winkler M, Jester B, Nien-Shy C, Massei S, Minckler DS, Jester JV, Brown DJ (2010) High resolution three dimensional reconstruction of the collagenous matrix of the human optic nerve head. Brain Res Bul 81(3): 339–348
Woo SL, Kobayashi AS, Lawrence C, Schlegel WA (1971) Mathematical model of the corneo-scleral shell as applied to intraocular pressure-volume relations and applanation tonometry. Ann Biomed Eng 1: 87–98
Woo SL, Kobayashi AS, Schlegel WA, Lawrence C (1972) Non-linear material properties of intact cornea and sclera. Exp Eye Res 14: 29–39
Yang H, Downs JC, Girkin C, Sakata L, Bellezza A, Thompson H, Burgoyne CF (2007) 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness. Invest Ophthalmol Vis Sci 48(10): 4597–4607