The classical Kelvin–Voigt problem for incompressible fluids with unknown non-constant density: existence, uniqueness and regularity
Tóm tắt
Từ khóa
Tài liệu tham khảo
Amrouche, 2020, Turbulent flows as generalized Kelvin–Voigt materials: modeling and analysis, Nonlinear Anal., 196, 10.1016/j.na.2020.111790
Antontsev, 1990
Antontsev, 2017, Kelvin–Voigt equation with p-Laplacian and damping term: existence, uniqueness and blow-up, J. Math. Anal. Appl., 446, 1255, 10.1016/j.jmaa.2016.09.023
Antontsev, 2017, Generalized Kelvin–Voigt equations with p-Laplacian and source/absorption terms, J. Math. Anal. Appl., 456, 99, 10.1016/j.jmaa.2017.06.056
Antontsev, 2019, Kelvin–Voigt equations perturbed by anisotropic relaxation, diffusion and damping, J. Math. Anal. Appl., 473, 1122, 10.1016/j.jmaa.2019.01.011
Antontsev, 2020, Kelvin–Voigt equations with anisotropic diffusion, relaxation, and damping: blow-up and large time behavior, Asymptotic Anal., 121, 125, 10.3233/asy-201597
Antontsev, 2019, Existence and large time behavior for generalized Kelvin–Voigt equations governing nonhomogeneous and incompressible fluids, J. Phys.: Conf. Ser., 1268, 10.1088/1742-6596/1268/1/012008
Antontsev, 2019, Generalized Kelvin–Voigt equations for nonhomogeneous and incompressible fluids, Commun. Math. Sci., 17, 1915, 10.4310/cms.2019.v17.n7.a7
Berselli, 2012, On the structural stability of the Euler–Voigt and Navier–Stokes–Voigt models, Nonlinear Anal. Theory Methods Appl., 75, 117, 10.1016/j.na.2011.08.011
Berselli, 2017, Suitable weak solutions to the 3D Navier–Stokes equations are constructed with the Voigt approximation, J. Differ. Equ., 262, 3285, 10.1016/j.jde.2016.11.027
Bogovskiǐ, 1980, Solutions of some problems of vector analysis, associated with the operators div and grad, vol 149, 5
Cao, 2006, Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4, 823, 10.4310/cms.2006.v4.n4.a8
Cianchi, 2016, Sobolev inequalities in arbitrary domains, Adv. Math., 293, 644, 10.1016/j.aim.2016.02.012
Constantin, 1988
Galdi, 2011
Joseph, 1990
Kalantarov, 2009, Global attractors and determining modes for the 3D Navier–Stokes–Voight equations, Chin. Ann. Math. B, 30, 697, 10.1007/s11401-009-0205-3
Kotsiolis, 1989, Global a priori estimates on the half-line t ⩾ 0, asymptotic stability and time periodicity of ‘small’ solutions of equations for the motion of Oldroyd fluids and Kelvin–Voigt fluids
Ladyzenskaya, 1966, On certain nonlinear problems of the theory of continuous media, p 149
Ladyzhenskaya, 2003, On errors in two of my publications on Navier–Stokes equations and their corrections, J. Math. Sci., 115, 2789, 10.1023/a:1023321903383
Ladyzenskaya, 1978, Unique solvability of an initial-and boundary-value problem for viscous incompressible nonhomogeneous fluids, J. Sov. Math., 9, 697, 10.1007/bf01085325
Levant, 2010, On the statistical properties of the 3D incompressible Navier–Stokes–Voigt model, Commun. Math. Sci., 8, 277, 10.4310/cms.2010.v8.n1.a14
Lewandowski, 2018, On the Bardina's model in the whole space, J. Math. Fluid Mech., 20, 1335, 10.1007/s00021-018-0369-2
Layton, 2006, On a well-posed turbulence model, Discrete Contin. Dyn. Syst. B, 6, 111, 10.3934/dcdsb.2006.6.111
Lions, 1996
Maz’ya, 2011
Obukhovskiǐ, 2004, Optimal feedback control in the problem of the motion of a viscoelastic fluid, Topol. Methods Nonlinear Anal., 23, 323, 10.12775/tmna.2004.014
Oskolkov, 1977, The uniqueness and global solvability of boundary-value problems for the equations of motion for aqueous solutions of polymers, J. Math. Sci., 8, 427, 10.1007/bf01084613
Oskolkov, 1997, Nonlocal problems for the equations of Kelvin–Voigt fluids and their ε-approximations, J. Math. Sci., 87, 3393, 10.1007/bf02355590
Pavlovsky, 1971, On theoretical description of weak aqueous solutions of polymers, Dokl. Akad. Nauk SSSR, 200, 809
Pileckas, 1983, On spaces of solenoidal vectors, Trudy Mat. Inst. Steklov., 159, 137
Pileckas, 1984, Proc. Steklov. Mat. Inst., 159, 141
Ramos, 2010, Invariant measures for the 3D Navier–Stokes–Voigt equations and their Navier–Stokes limit, Discrete Contin. Dyn. Syst., 28, 375, 10.3934/dcds.2010.28.375
Simon, 1990, Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure, SIAM J. Math. Anal., 21, 1093, 10.1137/0521061
Zvyagin, 2005, On weak solutions of the equations of motion of a viscoelastic medium with variable boundary, Bound Value Probl., 2005, 10.1155/BVP.2005.215