The choice of the spherical radial basis functions in local gravity field modeling

Róbert Tenzer1, R. Klees1
1Faculty of Aerospace Engineering, Physical and Space Geodesy (PSG), Delft University of Technology, Delft, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Blaha G., Blessette R.P. and Hadgigeorge G., 1986. Global point-mass adjustment of the oceanic geoid based on satellite altimetry. Marine Geodesy, 10, 97–129.

Chambodut A., Panet I., Mandea M., Diament M., Holschneider M. and Jamet O., 2005. Wavelet frames: an alternative to spherical harmonic representation of potential fields. Geophys. J. Int., 163, 875–899.

Förstner W., 1979. Ein Varfahren zur Schätzung von Variaz-und Kovarianzkomponenten. Allgemeine Vermessungs-Nachrichten, 86, 446–453.

Freeden W., Gervens T. and Schreiner M., 1998. Constructive Approximation of the Sphere (with Applications to Geomathematics). Oxford Science Publication, Clarendon Press.

Hardy R.L. and Göpfert W.M., 1975. Least squares prediction of gravity anomalies, geoidal undulations, and deflections of the vertical with multiquadric harmonic functions. Geophys. Res. Lett., 2, 423–426.

Heikkinen M., 1981. Solving the Shape of the Earth by Using Digital Density Models. Report 81(2), Finnish Geodetic Institute, Helsinki, Finland.

Holschneider M., Chambodut A. and Mandea M., 2003. From global to regional analysis of the magnetic field on the sphere using wavelet frames. Phys. Earth Planet. Inter., 135, 107–124.

Klees R. and Wittwer T., 2007. A data-adaptive design of a spherical basis function network for gravity field modeling. In: Tregoning P. and Rizos C. (Eds.), Dynamic Planet-Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools. IAG Symposia, 130, Springer-Verlag, Berlin, Heidelberg, 303–328.

Klees R., Tenzer R., Prutkin I. and Wittwer T., 2008. A data-driven approach to local gravity field modeling using spherical radial basis functions. J. Geodesy, 82, 457–471, doi: 10.1007/s00190-007-0196-3.

Koch K.R. and Kusche J., 2002. Regularization of geopotential determination from satellite data by variance components. J. Geodesy, 76, 259–268.

Krarup T., 1969. A Contribution to the Mathematical Foundation of Physical Geodesy. Report 44, Danish Geodetic Institute, Copenhagen, Denmark.

Kusche J., 2003. A Monte-Carlo technique for weight estimation in satellite geodesy. J. Geodesy, 76, 641–652.

Lehmann R., 1993. The method of free-positioned point masses-geoid studies on the Gulf of Bothnia. Bulletin Géodésique, 67, 31–40.

Lehmann R., 1995. Gravity field approximation using point masses in free depths. International Association of Geodesy Buleltin, Section IV, No.1, 129–140.

Lelgemann D., 1981. On numerical properties of interpolation with harmonic kernel functions. Manuscripta Geodaetica, 6, 157–191.

Lelgemann D. and Marchenko A.N., 2001. On Concepts for Modeling the Earth’s Gravity Field. Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften, Reihe A, Heft Nr. 117, München, Germany.

Marchenko A.N., 1998. Parameterization of the Earth’s Gravity Field: Point and Line Singularities. Lviv Astronomical and Geodetical Society, Lviv, Ukraine.

Panet I., Chambodut A., Panet I., Diament M., Holschneider M. and Jamet O., 2006. New insights on intraplate volcanism in French Polynesia from wavelet analysis of GRACE, CHAMP, and sea surface data. J. Geophys. Res., 111, B09403, doi: 10.1029/2005JB004141.

Reilly J.P. and Herbrechtsmeier E.H., 1978. A systematic approach to modeling the geopotential with point mass anomalies. J. Geophys. Res., 83, 841–844.

Sansò F. and Tscherning C.C., 2003. Fast spherical collocation: theory and examples. J. Geodesy, 77, 101–112.

Schmidt M., Kusche J., van Loon J., Shum C.K., Han S.C. and Fabert O., 2005. Multi-resolution representation of regional gravity data. In: Jekeli C., Bastos L. and Fernandes J. (Eds.), Gravity, Geoid and Space Missions. Springer-Verlag, Berlin, Heiderlberg, New York, 167–172.

Schmidt M., Fengler M., Mayer-Gürr T., Eicker A., Kusche J., Sanchez J. and Han S.C., 2007. Regional gravity modelling in terms of spherical base functions. J. Geodesy, 8, 17–38, doi: 10.1007/s00190-006-0101-5.

Sünkel H., 1981. Point Mass Models and the Anomalous Gravitational Field. Report No. 328, The Ohio State University, Dept of Geod Sciences, Columbus, Ohio.

Sünkel H., 1983. The Generation of a Mass Point Model from Surface Gravity Data. Report No. 353, The Ohio State University, Dept of Geod Sciences, Columbus, Ohio.

Tscherning C.C., 1986. Functional methods for gravity field approximation. In: Sünkel H. (Ed.), Mathematical and Numerical Techniques in Physical Geodesy. Lecture Notes in Earth Sciences, 7, Springer-Verlag, Berlin, Heidelberg, 3–47.

Vermeer M., 1992. Geoid determination with mass point frequency domain inversion in the Mediterranean. Mare Nostrum, GEOMED Report 2, Madrid, 109–119.

Vermeer M., 1995. Mass point geopotential modeling using fast spectral techniques; historical overview, toolbox description, numerical experiment. Manuscripta Geodaetica, 20, 362–378.