The charge exchange of slow highly charged ions at surfaces unraveled with freestanding 2D materials

Surface Science Reports - Tập 77 - Trang 100577 - 2022
Richard A. Wilhelm1
1TU Wien, Institute of Applied Physics, Wiedner Hauptstr. 8-10/E134, Vienna, 1040, Austria

Tài liệu tham khảo

Rutherford, 1908, The charge and nature of the alpha-particle, Proc. R. Soc. Lond. - Ser. A Contain. Pap. a Math. Phys. Character, 81, 162 Rutherford, 1911, The scattering of alpha and beta particles by matter and the structure of the atom, Phil. Mag., 21, 669, 10.1080/14786440508637080 Bohr, 1913, The constitution of atoms and molecules, Phil. Mag. Ser., 6 26, 1, 10.1080/14786441308634955 Bohr, 1913, II. On the theory of the decrease of velocity of moving electrified particles on passing through matter, Phil. Mag. Ser., 6 25, 10, 10.1080/14786440108634305 Bohr, 1913, LXXIII.On the constitution of atoms and molecules, Phil. Mag. Ser., 6 26, 857, 10.1080/14786441308635031 Bohr, 1913, XXXVII.On the constitution of atoms and molecules, Phil. Mag. Ser., 6 26, 476, 10.1080/14786441308634993 Nastasi, 2006 2016 Utke, 2012 Hlawacek, 2014, Helium ion microscopy, J. Vac. Sci. Technol. B, Nanotechnol. Microelectr.: Mater. Proc. Measur. Phenom., 32 2016 Fechner, 2004, Ion beam assisted smoothing of optical surfaces, Appl. Phys. Mater. Sci. Process, 78, 651, 10.1007/s00339-003-2274-6 Facsko, 1999, formation of ordered nanoscale semiconductor dots by ion sputtering, Science, 285, 1551, 10.1126/science.285.5433.1551 Van der Heide, 2014 Feng, 2004, Mechanics of smart-cut® technology, Int. J. Solid Struct., 41, 4299, 10.1016/j.ijsolstr.2004.02.054 Arnau, 1997, Interaction of slow multicharged ions with solid surfaces, Surf. Sci. Rep., 27, 113, 10.1016/S0167-5729(97)00002-2 Bohr, 1954, Electron capture and loss by heavy ions penetrating through matter, Matematisk-Fysiske Meddelelser Kongelige Danske Videnskabernes Selskab, 28, 1 Schenkel, 1999, Interaction of slow, very highly charged ions with surfaces, Prog. Surf. Sci., 61, 23, 10.1016/S0079-6816(99)00009-X Geim, 2007, The rise of graphene, Nat. Mater., 6, 183, 10.1038/nmat1849 Gillaspy, 2001, Highly charged ions, J. Phys. B Atom. Mol. Opt. Phys., 34, R93, 10.1088/0953-4075/34/19/201 Beyer, 2005, Introduction to the physics of highly charged ions Zschornack, 1986 Herrmann, 1994, Charge-state equilibration length of a highly charged ion inside a carbon solid, Phys. Rev., 50, 1435, 10.1103/PhysRevA.50.1435 Imai, 2015, Equilibrium and non-equilibrium charge-state distributions of 2MeV/u sulfur ions passing through carbon foils, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 354, 172, 10.1016/j.nimb.2014.12.045 Bohr, 1948, The penetration of atomic particles through matter, Mat Fys Medd Dan Vid Selsk, 18, 1 Lamour, 2015, Improvement of the ETACHA Code towards low velocities and many-electron ions, J. Phys. Conf., 635, 10.1088/1742-6596/635/3/032022 Gruber, 2016, Ultrafast electronic response of graphene to a strong and localized electric field, Nat. Commun., 7, 10.1038/ncomms13948 Burgdörfer, 1991, Above-surface neutralization of highly charged ions: the classical over-the-barrier model, Phys. Rev., 44, 5674, 10.1103/PhysRevA.44.5674 Niehaus, 1986, A classical model for multiple-electron capture in slow collisions of highly charged ions with atoms, J. Phys. B Atom. Mol. Phys., 19, 2925, 10.1088/0022-3700/19/18/021 Ducrée, 1998, Extended classical over-barrier model for collisions of highly charged ions with conducting and insulating surfaces, Phys. Rev., 57, 338, 10.1103/PhysRevA.57.338 Ducrée, 1999, Improved dynamic simulation of highly charged ion-surface collisions, Phys. Scripta, T80, 220, 10.1238/Physica.Topical.080a00220 Lake, 2013, Classical over-the-barrier model for neutralization of highly charged ions above thin dielectric films, Phys. Rev., 87, 10.1103/PhysRevA.87.062901 Dirac, 1927, The quantum theory of the emission and absorption of radiation, 114, 243 Fermi, 1974 Primetzhofer, 2011, Resonant charge transfer in low-energy ion scattering: information depth in the reionization regime, Surf. Sci., 605, 1913, 10.1016/j.susc.2011.07.006 Briand, 1990, Production of hollow atoms by the excitation of highly charged ions in interaction with a metallic surface, Phys. Rev. Lett., 65, 159, 10.1103/PhysRevLett.65.159 Tőkési, 2001, Hollow-ion formation in microcapillaries, Phys. Rev., 64, 10.1103/PhysRevA.64.042902 Jones, 2017, Special issue on Rydberg atom physics, J. Phys. B Atom. Mol. Opt. Phys., 50, 10.1088/1361-6455/aa5d06 Meyer, 1991, Evidence for above-surface and subsurface neutralization during interactions of highly charged ions with a metal target, Phys. Rev. Lett., 67, 723, 10.1103/PhysRevLett.67.723 Hägg, 1997, Above-surface neutralization of slow highly charged ions in front of ionic crystals, Phys. Rev., 55, 2097, 10.1103/PhysRevA.55.2097 Hagstrum, 1954, Auger ejection of electrons from tungsten by noble gas ions, Phys. Rev., 96, 325, 10.1103/PhysRev.96.325 Jahnke, 2015, Interatomic and intermolecular Coulombic decay: the coming of age story, J. Phys. B Atom. Mol. Opt. Phys., 48, 10.1088/0953-4075/48/8/082001 Schmidt, 2016, Quasimolecular electron promotion beyond the 1 s σ and 2 p π channels in slow collisions of H, Phys. Rev., 94, 10.1103/PhysRevA.94.052701 Schlathölter, 2000, Sputtering of hollow atoms from carbon surfaces, Phys. Rev. A, 62, 10.1103/PhysRevA.62.042901 Ogawa, 2013, Secondary electron emission from a thin carbon foil induced by H+, He2+ and Li3+ at fixed velocity of 1MeV/u, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 315, 291, 10.1016/j.nimb.2013.03.024 Kim, 2011, Enhanced production of low energy electrons by alpha particle impact, Proc. Natl. Acad. Sci. USA, 108, 11821, 10.1073/pnas.1104382108 Eder, 1997, Precise total electron yield measurements for impact of singly or multiply charged ions on clean solid surfaces, Rev. Sci. Instrum., 68, 165, 10.1063/1.1147802 Rothard, 1990, Secondary-electron yields from thin foils: a possible probe for the electronic stopping power of heavy ions, Phys. Rev., 41, 2521, 10.1103/PhysRevA.41.2521 Schenkel, 2000, Electronic sputtering of solids by slow, highly charged ions: fundamentals and applications, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 161, 65, 10.1016/S0168-583X(99)00880-0 Winecki, 1996, Neutralization and equilibration of highly charged argon ions at grazing incidence on a graphite surface, Phys. Rev., 53, 4228, 10.1103/PhysRevA.53.4228 Wilhelm, 2014, Charge exchange and energy loss of slow highly charged ions in 1 nm thick carbon nanomembranes, Phys. Rev. Lett., 112, 10.1103/PhysRevLett.112.153201 Averbukh, 2006, Interatomic electronic decay in endohedral fullerenes, Phys. Rev. Lett., 96, 10.1103/PhysRevLett.96.053401 Cederbaum, 1997, Giant intermolecular decay and fragmentation of clusters, Phys. Rev. Lett., 79, 4778, 10.1103/PhysRevLett.79.4778 Gokhberg, 2012, Environment assisted electron capture, J. Phys. Conf., 388, 4, 10.1088/1742-6596/388/6/062031 Gokhberg, 2010, Interatomic Coulombic electron capture, Phys. Rev., 82, 10.1103/PhysRevA.82.052707 Penning, 1927, Messungen über die Potentialdifferenz zwischen den positiven Schichten in Argon und Neon, Zeitschrift für Physik A Hadrons and nuclei, 41, 769, 10.1007/BF01454797 Averbukh, 2005, Ab initio calculation of interatomic decay rates by a combination of the Fano ansatz, Green’s-function methods, and the Stieltjes imaging technique, J. Chem. Phys., 123, 10.1063/1.2126976 Santra, 2001, Electronic decay of valence holes in clusters and condensed matter, Phys. Rev. B, 64, 10.1103/PhysRevB.64.245104 Janev, 1985, State-selective electron capture in atom-highly charged ion collisions, Phys. Rep., 117, 265, 10.1016/0370-1573(85)90118-8 Jahnke, 2004, Experimental observation of interatomic coulombic decay in neon dimers, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.163401 Trinter, 2013, Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers, Nature, 505, 664, 10.1038/nature12927 Schmidt-Böcking, 2021, The COLTRIMS reaction microscope-the spyhole into the ultrafast entangled dynamics of atomic and molecular systems, Ann. Phys., 533, 10.1002/andp.202100134 Dörner, 2000, Cold Target Recoil Ion Momentum Spectroscopy: a ‘momentum microscope’ to view atomic collision dynamics, Phys. Rep., 330, 95, 10.1016/S0370-1573(99)00109-X Titze, 2011, Ionization dynamics of helium dimers in fast collisions with He++, Phys. Rev. Lett., 106, 10.1103/PhysRevLett.106.033201 Allison, 1958, Experimental results on charge-changing collisions of hydrogen and helium atoms and ions at kinetic energies above 0.2 kev, Rev. Mod. Phys., 30, 1137, 10.1103/RevModPhys.30.1137 Müller, 1977, Scaling of cross sections for multiple electron transfer to highly charged ions colliding with atoms and molecules, Phys. Lett., 62A, 391, 10.1016/0375-9601(77)90672-7 Wilhelm, 2014 Ryufuku, 1980, Oscillatory behavior of charge transfer cross sections as a function of the charge of projectiles in low-energy collisions, Phys. Rev. A, 21, 745, 10.1103/PhysRevA.21.745 Hvelplund, 1985, Energy-gain spectroscopy studies of state-selective electron capture for multiply charged ar recoil ions: comparison with the extended classical barrier model, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 9, 421, 10.1016/0168-583X(85)90338-6 Sattin, 2000, A semiclassical over-barrier model for charge exchange between highly charged ions and one-optical-electron atoms, J. Phys. B Atom. Mol. Opt. Phys., 33, 861, 10.1088/0953-4075/33/5/302 Fritsch, 1984, Atomic-orbital-expansion studies of electron transfer in bare-nucleus Z (Z = 2 , 4 - 8) -hydrogen-atom collisions, Phys. Rev., 29, 3039, 10.1103/PhysRevA.29.3039 Fritsch, 1991, The semiclassical close-coupling description of atomic collisions: recent developments and results, Phys. Rep., 202, 1, 10.1016/0370-1573(91)90008-A Toshima, 1994, Ionization and charge transfer of atomic hydrogen in collision with multiply charged ions, Phys. Rev., 50, 3940, 10.1103/PhysRevA.50.3940 Errea, 2006, Semiclassical treatment of excitation and electron loss in aq+ + h (1s) collisions using spherical bessel functions, Phys. Rev., 74, 10.1103/PhysRevA.74.012722 Igenbergs, 2012, Charge exchange and ionization in N 7 + –, N 6 + –, C 6 + –H(n = 1, 2) collisions studied systematically by theoretical approaches, J. Phys. B Atom. Mol. Opt. Phys., 45, 10.1088/0953-4075/45/6/065203 Mullen, 2016, CHARGE EXCHANGE-INDUCED X-RAY EMISSION OF Fe xxv AND Fe xxvi VIA A STREAMLINED MODEL, ApJS, 224, 31, 10.3847/0067-0049/224/2/31 Belkic, 1986, The first Born approximation for charge transfer collisions, J. Phys. B Atom. Mol. Phys., 19, 2945, 10.1088/0022-3700/19/18/023 Belkić, 1991, Exact second-order Born approximation with correct boundary conditions for symmetric charge exchange, Phys. Rev., 43, 4751, 10.1103/PhysRevA.43.4751 Jorge, 2015, Scaling for state-selective charge exchange due to collisions of multicharged ions with hydrogen, J. Phys. B Atom. Mol. Opt. Phys., 48, 10.1088/0953-4075/48/23/235201 Illescas, 1999, Classical study of single-electron capture and ionization processes in arq+ + (h , h2) collisions, Phys. Rev., 60, 4546, 10.1103/PhysRevA.60.4546 Ziaeian, 2020, Interaction of be4+ and ground state hydrogen atom-classical treatment of the collision, Atoms, 8, 27, 10.3390/atoms8020027 Harel, 1998, Cross sections for electron capture from atomic hydrogen by fully stripped ions in the 0.05-1.00 a.u. impact velocity range, Atomic Data Nucl. Data Tables, 68, 279, 10.1006/adnd.1997.0768 Minami, 2006, Lattice, time-dependent Schrödinger equation approach for charge transfer in collisions of Be 4+ with atomic hydrogen, J. Phys. B Atom. Mol. Opt. Phys., 39, 2877, 10.1088/0953-4075/39/12/020 Jorge, 2016, Application of a grid numerical method to calculate state-selective cross sections for electron capture in be4+ + h (1s) collisions, Phys. Rev., 94, 10.1103/PhysRevA.94.032707 Bodewits, 2019, Charge-exchange emission from hydrogen-like carbon ions colliding with water molecules, Atoms, 7, 17, 10.3390/atoms7010017 Beiersdorfer, 2000, X-ray emission following low-energy charge exchange collisions of highly charged ions, Phys. Rev. Lett., 85, 5090, 10.1103/PhysRevLett.85.5090 Allen, 2008 Thumm, 1994, Charge-exchange and electron-emission in slow collisions of highly-charged ions with C-60, J. Phys. B Atom. Mol. Opt. Phys., 27, 3515, 10.1088/0953-4075/27/15/024 Bromley, 2018, A gas cell apparatus for measuring charge exchange cross sections with multicharged ions, Rev. Sci. Instrum., 89, 10.1063/1.5028139 Martin, 2004, Decay of hollow atoms in ne10+-c60 collisions, Phys. Rev. A Atom. Mol. Optic. Phys., 69 Martin, 2002, Very fast hollow-atom decay processes in xe30+-c60 collisions, Phys. Rev. Lett., 89, 10.1103/PhysRevLett.89.183401 Hadjar, 2000, Z oscillations in ion-induced fullerene fragmentation, Phys. Rev. Lett., 84, 4076, 10.1103/PhysRevLett.84.4076 Hadjar, 2001, Projectile atomic-number effect on ion-induced fragmentation and ionization of fullerenes, Phys. Rev. A, 63, 10.1103/PhysRevA.63.033201 Schwestka, 2018, A versatile ion beam spectrometer for studies of ion interaction with 2D materials, Rev. Sci. Instrum., 89, 10.1063/1.5037798 Niggas, 2020, The role of contaminations in ion beam spectroscopy with freestanding 2D materials: a study on thermal treatment, J. Chem. Phys., 153, 10.1063/5.0011255 Vernhet, 1997, Multielectron processes in heavy ion – atom collisions at intermediate velocity, Phys. Rev. Lett., 79, 3625, 10.1103/PhysRevLett.79.3625 Echenique, 1995, Dynamic screening of ions in solids, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 96, 583, 10.1016/0168-583X(95)00235-9 Sato, 2003, Charge fraction of 6.0 MeV/n heavy ions with a carbon foil: dependence on the foil thickness and projectile atomic number, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 201, 571, 10.1016/S0168-583X(02)02225-5 Sato, 2004, Penetration of 4.3 and 6.0 MeV/u highly charged, heavy ions through carbon foils, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 225, 439, 10.1016/j.nimb.2004.05.028 Lohmann, 2020, Disparate energy scaling of trajectory-dependent electronic excitations for slow protons and He ions, Phys. Rev. Lett., 124, 10.1103/PhysRevLett.124.096601 Briere, 1997, Non-equilibrium energy loss for very highly charged ions in insulators, Phys. Scripta, T73, 324, 10.1088/0031-8949/1997/T73/107 Schenkel, 1997, Electronic sputtering of thin conductors by neutralization of slow highly charged ions, Phys. Rev. Lett., 78, 2481, 10.1103/PhysRevLett.78.2481 Schenkel, 1997, Charge state dependent energy loss of slow heavy ions in solids, Phys. Rev. Lett., 79, 2030, 10.1103/PhysRevLett.79.2030 Hattass, 1999, Charge equilibration time of slow, highly charged ions in solids, Phys. Rev. Lett., 82, 4795, 10.1103/PhysRevLett.82.4795 Creutzburg, 2020, Vanishing influence of the band gap on the charge exchange of slow highly charged ions in freestanding single-layer MoS 2, Phys. Rev. B, 102, 10.1103/PhysRevB.102.045408 Jablonski, 2017, X-ray emission in interaction of highly charged xenon ions with Be foil, J. Phys. Conf., 810, 10.1088/1742-6596/810/1/012050 Briand, 1994, On the mechanism of formation of hollow atoms below a surface, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 87, 138, 10.1016/0168-583X(94)95249-3 Briand, 1999, The hollow atoms, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 154, 166, 10.1016/S0168-583X(99)00192-5 Stolterfoht, 1995, Multiple-cascade model for the filling of hollow Ne atoms moving below an Al surface, Phys. Rev., 52, 445, 10.1103/PhysRevA.52.445 Kost, 2007, Channels of potential energy dissipation during multiply charged argon-ion bombardment of copper, Phys. Rev. Lett., 98, 10.1103/PhysRevLett.98.225503 Limburg, 1995, Do hollow atoms exist in front of an insulating LiF(100) surface?, Phys. Rev. Lett., 75, 217, 10.1103/PhysRevLett.75.217 Nishida, 2020, Observation of light and secondary ion emissions from surfaces irradiated with highly charged ions, J. Vac. Sci. Technol. B, 38, 10.1116/6.0000042 Xu, 2018, Optical emission from the interaction of highly charged xeq+ (6 ≤ q ≤ 23) ions with gaas surface, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 436, 74, 10.1016/j.nimb.2018.04.015 Akram, 2015, Imaging the photons during transmission of ions through glass capillaries, J. Phys. Conf., 583, 10.1088/1742-6596/583/1/012032 Herder, 2020, Ionization probability of sputtered indium atoms under impact of slow highly charged ions, J. Vac. Sci. Technol. B, 38, 10.1116/6.0000171 Skopinski, 2021, Time-of-flight mass spectrometry of particle emission during irradiation with slow, highly charged ions, Rev. Sci. Instrum., 92, 10.1063/5.0025812 Briand, 1996, Decay of hollow atoms above and below a surface, Phys. Rev., 54, 4136, 10.1103/PhysRevA.54.4136 Briand, 2009, X-ray characterization of surfaces irradiated with highly charged ions, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 267, 665, 10.1016/j.nimb.2008.11.050 Jablonski, 2020, Observation of two-electron one-photon X-ray transitions in collisions of slow Xe 26+ ions with beryllium surface, J. Phys. Conf., 1412, 10.1088/1742-6596/1412/20/202002 Schwestka, 2018, The role of radiative de-excitation in the neutralization process of highly charged ions interacting with a single layer of graphene, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 422, 63, 10.1016/j.nimb.2018.02.022 Abdallah, 1988 Desclaux, 1975, A multiconfiguration relativistic Dirac-FOCK program, Comput. Phys. Commun., 9, 31, 10.1016/0010-4655(75)90054-5 Indelicato, 1990, Multiconfiguration Dirac-Fock calculations of transition energies with QED corrections in three-electron ions, Phys. Rev., 42, 5139, 10.1103/PhysRevA.42.5139 Aumayr, 1994, Electron-emission induced by slow highly-charged ions on a clean metal-surface, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 90, 523, 10.1016/0168-583X(94)95607-3 Aumayr, 1993, Emission of electrons from a clean gold surface induced by slow, very highly charged ions at the image charge acceleration limit, Phys. Rev. Lett., 71, 1943, 10.1103/PhysRevLett.71.1943 Winter, 1999, Hollow atoms, J. Phys. B Atom. Mol. Opt. Phys., 32, R39, 10.1088/0953-4075/32/7/005 Schwestka, 2019, Charge-exchange-driven low-energy electron splash induced by heavy ion impact on condensed matter, J. Phys. Chem. Lett., 10, 4805, 10.1021/acs.jpclett.9b01774 Kurz, 1993, Neutralization of slow multicharged ions at a clean gold surface: total electron yields, Phys. Rev., 48, 2182, 10.1103/PhysRevA.48.2182 Niggas, 2022, Ion-induced surface charge dynamics in freestanding monolayers of graphene and MoS2 probed by the emission of electrons, Phys. Rev. Lett., 129, 10.1103/PhysRevLett.129.086802 Meissl, 2008, Electron emission from insulators irradiated by slow highly charged ions, e-J. Surf. Sci. Nanotechnol., 6, 54, 10.1380/ejssnt.2008.54 Wilhelm, 2015, Highly charged ion induced nanostructures at surfaces by strong electronic excitations, Prog. Surf. Sci., 90, 377, 10.1016/j.progsurf.2015.06.001 Werner, 2019, Questioning a universal law for electron attenuation, Physics, 12, 93, 10.1103/Physics.12.93 Geelen, 2019, Nonuniversal transverse electron mean free path through few-layer graphene, Phys. Rev. Lett., 123, 10.1103/PhysRevLett.123.086802 Burgdörfer, 2004, Multi-electron dynamics for neutralization of highly charged ions near surfaces, Vacuum, 73, 3, 10.1016/j.vacuum.2003.12.033 Wirtz, 2001, Vertical incidence of slow Ne10+ ions on an LiF surface: suppression of the trampoline effect, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 182, 36, 10.1016/S0168-583X(01)00652-8 Stolterfoht, 2016, Guiding of charged particles through capillaries in insulating materials, Phys. Rep., 629, 1, 10.1016/j.physrep.2016.02.008 Skog, 2008, Evidence of sequentially formed charge patches guiding ions through nanocapillaries, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.223202 Cassimi, 2009, Imaging dynamics of charge-auto-organisation in glass capillaries, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 267, 674, 10.1016/j.nimb.2008.11.016 Bourg, 1987, 1 Douysset, 2000, Highly charged ion densities and ion confinement properties in an electron-cyclotron-resonance ion source, Phys. Rev., 61, 3015 Sporn, 1997, Potential sputtering of clean SiO2 by slow highly charged ions, Phys. Rev. Lett., 79, 945, 10.1103/PhysRevLett.79.945 Marrs, 1994, The electron-beam ion-trap, Phys. Today, 47, 27, 10.1063/1.881419 Zschornack, 2008, Compact electron beam ion sources/traps: review and prospects (invited), Rev. Sci. Instrum., 79, 10.1063/1.2804901 Levine, 1988, The electron beam ion trap: a new instrument for atomic physics measurements, Phys. Scripta, T22, 157, 10.1088/0031-8949/1988/T22/024 Donets, 1981, Investigation of ionization of positive-ions by electron-impact, Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 80, 916 Donets, 1998, Historical review of electron beam ion sources (invited), Rev. Sci. Instrum., 69, 614, 10.1063/1.1148642 Galutschek, 2007, Compact 14.5 GHz all-permanent magnet ECRIS for experiments with slow multicharged ions, J. Phys. Conf., 58, 395, 10.1088/1742-6596/58/1/090 Micke, 2018, The Heidelberg compact electron beam ion traps, Rev. Sci. Instrum., 89, 10.1063/1.5026961 Weichsel, 2015, A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al + ion beam, Rev. Sci. Instrum., 86, 10.1063/1.4929517 Zschornack, 2012, Production of low-Z ions in the Dresden superconducting electron ion beam source for medical particle therapy, Rev. Sci. Instrum., 83, 10.1063/1.3672110 Kühn, 2020, High resolution photoexcitation measurements exacerbate the long-standing Fe XVII oscillator strength problem, Phys. Rev. Lett., 124, 10.1103/PhysRevLett.124.225001 Ovsyannikov, 2021, Main magnetic focus ion source: device with high electron current density, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 502, 23, 10.1016/j.nimb.2021.06.001 Tromp, 1984, A new UHV system for channeling/blocking analysis of solid surfaces and interfaces, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 4, 155, 10.1016/0168-583X(84)90055-7 Kozubek, 2019, Perforating freestanding molybdenum disulfide monolayers with highly charged ions, J. Phys. Chem. Lett., 10, 904, 10.1021/acs.jpclett.8b03666 Ritter, 2013, Fabrication of nanopores in 1 nm thick carbon nanomembranes with slow highly charged ions, Appl. Phys. Lett., 102, 10.1063/1.4792511 Hesch, 1999, 89 Bergsmann, 1995, 112 Kurz, 1992, Electron emission from slow hollow atoms at a clean metal surface, Phys. Rev. Lett., 69, 1140, 10.1103/PhysRevLett.69.1140 Serralta, 2020, Scanning transmission imaging in the helium ion microscope using a microchannel plate with a delay line detector, Beilstein J. Nanotechnol., 11, 1854, 10.3762/bjnano.11.167 He, 1990, An improved Si(Li) detector response function, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip., 299, 354, 10.1016/0168-9002(90)90805-G Sangsingkeow, 2003, Advances in germanium detector technology, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip., 505, 183, 10.1016/S0168-9002(03)01047-7 Lechner, 2004, Novel high-resolution silicon drift detectors, X Ray Spectrom., 33, 256, 10.1002/xrs.717 Porter, 2008, Performance of the EBIT calorimeter spectrometer, Rev. Sci. Instrum., 79, 10E307, 10.1063/1.2957925 Sigmund, 1969, Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets, Phys. Rev., 184, 383, 10.1103/PhysRev.184.383 Wucher, 2012, Laser post-ionisation- fundamentals, 217 Aumayr, 1999, Potential sputtering: desorption from insulator surfaces by impact of slow multicharged ions, Int. J. Mass Spectrom., 192, 415, 10.1016/S1387-3806(99)00075-5 Aumayr, 2007, Potential electron emission from metal and insulator surfaces, vol. 225, 79 Morosov, 1997, Correlation between projectile Auger electrons and slow secondary electrons emitted in collisions of highly charged ions with an insulator surface, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 125, 167, 10.1016/S0168-583X(96)01026-9 Barat, 1987, Coincident energy gain spectroscopy of electron capture in multiply charged ions colliding with He, H 2 and heavy rare-gas targets, J. Phys. B Atom. Mol. Phys., 20, 5771, 10.1088/0022-3700/20/21/024 Nijs, 1994, A coincidence study of multiple-electron capture in 15 N 7+ -Ar collisions, J. Phys. B Atom. Mol. Opt. Phys., 27, 2557, 10.1088/0953-4075/27/12/014 Schwestka, 2020 Cronologic, Website cronologic gmbh www.cronologic.de. Pešić, 2000, Energy dependence of neutralization in scattering of slow highly charged Ar ions from an Au surface, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 164–165, 511, 10.1016/S0168-583X(99)01046-0 Larkins, 1972, Correlation diagrams: their use in the interpretation of heavy ion-atom inelastic collisions, J. Phys. B Atom. Mol. Phys., 5, 571, 10.1088/0022-3700/5/3/024 Arnau, 1995, Molecular-orbital model for slow hollow atoms colliding with atoms in a solid, Phys. Rev., 51, R3399, 10.1103/PhysRevA.51.R3399 Fano, 1965, Interpretation of Ar+ - Ar collisions at 50 KeV, Phys. Rev. Lett., 14, 627, 10.1103/PhysRevLett.14.627 Wilhelm, 2017, Interatomic coulombic decay: the mechanism for rapid deexcitation of hollow atoms, Phys. Rev. Lett., 119, 10.1103/PhysRevLett.119.103401 Thomas, 1927, The calculation of atomic fields, Math. Proc. Camb. Phil. Soc., 23, 542, 10.1017/S0305004100011683 Fermi, 1928, Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente, Z. Phys., 48, 73, 10.1007/BF01351576 Lindhard, 1968, Approximation method in classical scattering by screened Coulomb fields, Matematisk-Fysiske Meddelelser Udgivet Af Det Kongelige Danske Videnskabernes Selskab, 36, 3 Wilhelm, 2016, Charge-state-dependent energy loss of slow ions. I. Experimental results on the transmission of highly charged ions, Phys. Rev., 93 Wilhelm, 2019, Unraveling energy loss processes of low energy heavy ions in 2D materials, Commun. Phys., 2, 89, 10.1038/s42005-019-0188-7 Wilson, 1977, Calculations of nuclear stopping, ranges, and straggling in the low-energy region, Phys. Rev. B, 15, 2458, 10.1103/PhysRevB.15.2458 Schleife, 2015, Accurate atomistic first-principles calculations of electronic stopping, Phys. Rev. B, 91, 10.1103/PhysRevB.91.014306 Castro Neto, 2009, The electronic properties of graphene, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109 Wang, 1997, Nonlinear calculations of the stopping power for slow hydrogen and helium projectiles in solids, Phys. Rev., 56, 4795, 10.1103/PhysRevA.56.4795 Ojanperä, 2012, Nonadiabatic Ehrenfest molecular dynamics within the projector augmented-wave method, J. Chem. Phys., 136, 10.1063/1.3700800 Ojanperä, 2014, Electronic stopping power from first-principles calculations with account for core electron excitations and projectile ionization, Phys. Rev. B, 89, 10.1103/PhysRevB.89.035120 Hägg, 1997, Energy gain of highly charged ions in front of LiF, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 125, 133, 10.1016/S0168-583X(96)00910-X Kononov, 2020, Pre-equilibrium stopping and charge capture in proton-irradiated aluminum sheets, Phys. Rev. B, 102, 10.1103/PhysRevB.102.165401 Kononov, 2021, Anomalous stopping and charge transfer in proton-irradiated graphene, Nano Lett., 21, 4816, 10.1021/acs.nanolett.1c01416 Horsfield, 2004, Beyond Ehrenfest: correlated non-adiabatic molecular dynamics, J. Phys. Condens. Matter, 16, 8251, 10.1088/0953-8984/16/46/012 Caro, 2017, Stopping power beyond the adiabatic approximation, Sci. Rep., 7, 2618, 10.1038/s41598-017-02780-3 Enkovaara, 2010, Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method, J. Phys. Condens. Matter, 22, 10.1088/0953-8984/22/25/253202 Walter, 2008, Time-dependent density-functional theory in the projector augmented-wave method, J. Chem. Phys., 128, 10.1063/1.2943138 Mortensen, 2005, Real-space grid implementation of the projector augmented wave method, Phys. Rev. B, 71, 10.1103/PhysRevB.71.035109 Rossi, 2017, Kohn–Sham decomposition in real-time time-dependent density-functional theory: an efficient tool for analyzing plasmonic excitations, J. Chem. Theor. Comput., 13, 4779, 10.1021/acs.jctc.7b00589 Elliott, 2011, Perspectives on double-excitations in TDDFT, Chem. Phys., 391, 110, 10.1016/j.chemphys.2011.03.020 Bennett, 2019, Virtual photon approximation for three-body interatomic coulombic decay, Phys. Rev. Lett., 122, 10.1103/PhysRevLett.122.153401 Niggas, 2021, Peeling graphite layer by layer reveals the charge exchange dynamics of ions inside a solid, Commun. Phys., 4, 180, 10.1038/s42005-021-00686-1 Schweizer, 2020, Mechanical cleaning of graphene using in situ electron microscopy, Nat. Commun., 11, 1743, 10.1038/s41467-020-15255-3 Tripathi, 2017, Cleaning graphene: comparing heat treatments in air and in vacuum, Phys. Status Solidi Rapid Res. Lett., 11, 10.1002/pssr.201700124 VijayaSekhar, 2016, Self-healing phenomena of graphene: potential and applications, Open Phys., 14, 364, 10.1515/phys-2016-0040 Creutzburg, 2021, Angle-dependent charge exchange and energy loss of slow highly charged ions in freestanding graphene, Phys. Rev., 104, 10.1103/PhysRevA.104.042806 Schiwietz, 2010, Evidence for an ultrafast breakdown of the BeO band structure due to swift argon and xenon ions, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.187603 Khemliche, 1998, Hollow atom dynamics on LiF covered Au(111): role of the surface electronic structure, Phys. Rev. Lett., 81, 1219, 10.1103/PhysRevLett.81.1219 Schwestka, 2020, Atomic-scale carving of nanopores into a van der Waals heterostructure with slow highly charged ions, ACS Nano, 14, 10536, 10.1021/acsnano.0c04476 Heller, 2008, Defect mediated desorption of the KBr(001) surface induced by single highly charged ion impact, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.096102 Wilhelm, 2016, Slow highly charged ion induced nanopit formation on the KCl(001) surface, EPL, 115, 10.1209/0295-5075/115/43001 Ageev, 1994, Desorption induced by electronic-transitions, Prog. Surf. Sci., 47, 55, 10.1016/0079-6816(94)90014-0 Szymonski, 1990, Current views on electronic and cascade sputtering of alkali halides, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 46, 427, 10.1016/0168-583X(90)90742-D Guo, 2016, The continuous and discrete molecular orbital x-ray bands from Xeq+ (12 ≤ q ≤ 29) +Zn collisions, Sci. Rep., 6 Bhalla, 1973, Transition energies, and fluorescence yields of variously ionized states of argon, Phys. Rev., 8, 2877, 10.1103/PhysRevA.8.2877 Mirakhmedov, 1995, Auger and X-ray spectra formed at highly charged ion neutralization near the metal surface, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 98, 429, 10.1016/0168-583X(95)00161-1 Drake, 2021 Lakits, 1989, Statistics of ion-induced electron emission from a clean metal surface, Rev. Sci. Instrum., 60, 3151, 10.1063/1.1140546 Meissl, 2008 Heller, 2009 Cernusca, 2003 Hasselkamp, 1992, Kinetic electron emission from solid surfaces under ion bombardment, vol. 123 Tona, 2007, Nano-crater formation on a Si(111)-(7 x 7) surface by slow highly charged ion-impact, Surf. Sci., 601, 723, 10.1016/j.susc.2006.11.002 El-Said, 2008, Creation of nanohillocks on caf2 surfaces by single slow highly charged ions, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.237601 El-Said, 2012, Nanostructures created in sio2 surface: a comparison between the impingement by slow highly charged ions and by swift heavy ions, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 282, 63, 10.1016/j.nimb.2011.08.046 El-Said, 2016, Modifications of gallium phosphide single crystals using slow highly charged ions and swift heavy ions, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 382, 86, 10.1016/j.nimb.2016.04.058 Aumayr, 2011, Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions, J. Phys. Condens. Matter, 23, 10.1088/0953-8984/23/39/393001 Krasheninnikov, 2020, Are two-dimensional materials radiation tolerant?, Nanoscale Horizons, 5, 1447, 10.1039/D0NH00465K Zan, 2012, Graphene reknits its holes, Nano Lett., 12, 3936, 10.1021/nl300985q Schleberger, 2018, 2D material science: defect engineering by particle irradiation, Materials, 11, 1885, 10.3390/ma11101885 Balzer, 2021, Neutralization dynamics of slow highly charged ions passing through graphene nanoflakes–an embedding self-energy approach, Contrib. Plasma Phys., 62 Szymonski, 2002, Ionic crystal decomposition with light, Acta Phys. Pol. B, 33, 2237 Kalanov, 2019, Ion beam sputtering of silicon: energy distributions of sputtered and scattered ions, J. Vac. Sci. Technol., 37, 10.1116/1.5114973 Wilhelm, 2020, On the highly charged ion transmission spectroscopy applied to 2D materials, J. Phys. Conf., 1412, 10.1088/1742-6596/1412/6/062010 Turchanin, 2012, Carbon nanomembranes from self-assembled monolayers: functional surfaces without bulk, Prog. Surf. Sci., 87, 108, 10.1016/j.progsurf.2012.05.001