The capacitated vehicle routing problem with evidential demands

International Journal of Approximate Reasoning - Tập 95 - Trang 124-151 - 2018
Nathalie Helal1, Frédéric Pichon1, Daniel Porumbel2, David Mercier1, Éric Lefèvre1
1Univ. Artois, EA 3926, Laboratoire de Génie Informatique et d’Automatique de l’Artois (LGI2A), F-62400 Béthune, France
2Conservatoire National des Arts et Métiers, EA 4629, Cedric, 75003 Paris, France

Tài liệu tham khảo

Ben Abdallah, 2014, Combining statistical and expert evidence using belief functions: application to centennial sea level estimation taking into account climate change, Int. J. Approx. Reason., 55, 341, 10.1016/j.ijar.2013.03.008 Agarwal, 2004 Augerat, 1995 Baudrit, 2007, Joint propagation of probability and possibility in risk analysis: towards a formal framework, Int. J. Approx. Reason., 45, 82, 10.1016/j.ijar.2006.07.001 Baudrit, 2006, Joint propagation and exploitation of probabilistic and possibilistic information in risk assessment, IEEE Trans. Fuzzy Syst., 14, 593, 10.1109/TFUZZ.2006.876720 Bertsimas, 2011, Theory and applications of robust optimization, SIAM Rev., 53, 464, 10.1137/080734510 Birge, 1997 Bodin, 1983, Routing and scheduling of vehicles and crews: the state of the art, Comput. Oper. Res., 10, 63, 10.1016/0305-0548(83)90030-8 Brito, 2009, Fuzzy optimization in vehicle routing problems Charnes, 1958, Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil, Manag. Sci., 4, 235, 10.1287/mnsc.4.3.235 Chen, 2013, Particle swarm optimization for vehicle routing problem with uncertain demand Christiansen, 2007, A branch-and-price algorithm for the capacitated vehicle routing problem with stochastic demands, Oper. Res. Lett., 35, 773, 10.1016/j.orl.2006.12.009 Couso, 2010, Independence concepts in evidence theory, Int. J. Approx. Reason., 51, 748, 10.1016/j.ijar.2010.02.004 Couso, 2000, A survey of concepts of independence for imprecise probabilities, Risk Decis. Policy, 5, 165, 10.1017/S1357530900000156 Dempster, 1967, Upper and lower probabilities induced by a multivalued mapping, Ann. Math. Stat., 38, 325, 10.1214/aoms/1177698950 Denoeux, 1997, Analysis of evidence-theoretic decision rules for pattern classification, Pattern Recognit., 30, 1095, 10.1016/S0031-3203(96)00137-9 Denoeux, 2009, Extending stochastic ordering to belief functions on the real line, Inf. Sci., 179, 1362, 10.1016/j.ins.2009.01.009 Denoeux, 2016, 40 years of Dempster–Shafer theory, Int. J. Approx. Reason., 79, 1, 10.1016/j.ijar.2016.07.010 Destercke, 2013, Independence and 2-monotonicity: nice to have, hard to keep, Int. J. Approx. Reason., 54, 478, 10.1016/j.ijar.2012.11.002 Destercke, 2015, Ranking of fuzzy intervals seen through the imprecise probabilistic lens, Fuzzy Sets Syst., 278, 20, 10.1016/j.fss.2014.12.009 Destercke, 2011, Idempotent conjunctive combination of belief functions: extending the minimum rule of possibility theory, Inf. Sci., 181, 3925, 10.1016/j.ins.2011.05.007 Destercke, 2015, Cautious label ranking with label-wise decomposition, Eur. J. Oper. Res., 246, 927, 10.1016/j.ejor.2015.05.005 Dror, 1989, Vehicle routing with stochastic demands: properties and solution frameworks, Transp. Sci., 23, 166, 10.1287/trsc.23.3.166 Dubois, 1986, A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets, Int. J. Gen. Syst., 12, 193, 10.1080/03081078608934937 Dubois, 1991, Random sets and fuzzy interval analysis, Fuzzy Sets Syst., 42, 87, 10.1016/0165-0114(91)90091-4 Dubois, 2009, Formal representations of uncertainty, 85 Gauvin, 2014, A branch-cut-and-price algorithm for the vehicle routing problem with stochastic demands, Comput. Oper. Res., 50, 141, 10.1016/j.cor.2014.03.028 Gendreau, 1996, Stochastic vehicle routing, Eur. J. Oper. Res., 88, 3, 10.1016/0377-2217(95)00050-X Gendreau, 1996, A tabu search heuristic for the vehicle routing problem with stochastic demands and customers, Oper. Res., 44, 469, 10.1287/opre.44.3.469 Glover, 1989, Tabu search-part 1, ORSA J. Comput., 1, 190, 10.1287/ijoc.1.3.190 Glover, 1990, Tabu search-part 2, ORSA J. Comput., 2, 4, 10.1287/ijoc.2.1.4 Harmanani, 2011, A simulated annealing algorithm for the capacitated vehicle routing problem Helal, 2016, The capacitated vehicle routing problem with evidential demands: a belief-constrained programming approach, vol. 9861, 212 Helal Helal, 2017, A recourse approach for the capacitated vehicle routing problem with evidential demands, vol. 10369, 190 Holland, 1975 Kirkpatrick, 1983, Optimization by simulated annealing, Science, 220, 671, 10.1126/science.220.4598.671 Laporte, 1992, The vehicle routing problem: an overview of exact and approximate algorithms, Eur. J. Oper. Res., 59, 345, 10.1016/0377-2217(92)90192-C Laporte, 2002, An integer l-shaped algorithm for the capacitated vehicle routing problem with stochastic demands, Oper. Res., 50, 415, 10.1287/opre.50.3.415.7751 Masri, 2010, Belief linear programming, Int. J. Approx. Reason., 51, 973, 10.1016/j.ijar.2010.07.003 Mourelatos, 2006, A design optimization method using evidence theory, J. Mech. Des., 128, 901, 10.1115/1.2204970 Peng, 2010, Vehicle routing problem with fuzzy demands and the particle swarm optimization solution Pichon, 2012, Relevance and truthfulness in information correction and fusion, Int. J. Approx. Reason., 53, 159, 10.1016/j.ijar.2011.02.006 Quaeghebeur, 2012, Constrained optimization problems under uncertainty with coherent lower previsions, Fuzzy Sets Syst., 206, 74, 10.1016/j.fss.2012.02.004 Sengupta, 1970, A generalization of some distribution aspects of chance-constrained linear programming, Int. Econ. Rev., 11, 287, 10.2307/2525670 Shafer, 1976 Srivastava, 2013, An evolutionary algorithm based approach to design optimization using evidence theory, J. Mech. Des., 135, 10.1115/1.4024223 Sungur, 2008, A robust optimization approach for the capacitated vehicle routing problem with demand uncertainty, IIE Trans., 40, 509, 10.1080/07408170701745378 Teodorovic, 1996, The fuzzy set theory approach to the vehicle routing problem when demand at nodes is uncertain, Fuzzy Sets Syst., 82, 307, 10.1016/0165-0114(95)00276-6 Toth, 2002, An overview of vehicle routing problems, 1 Troffaes, 2007, Decision making under uncertainty using imprecise probabilities, Int. J. Approx. Reason., 45, 17, 10.1016/j.ijar.2006.06.001 Walley, 1991, Statistical Reasoning with Imprecise Probabilities, 10.1007/978-1-4899-3472-7 Zadeh, 1999, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst., 100, 9, 10.1016/S0165-0114(99)80004-9