The canonical structure of a pencil of degenerate matrix functions
Tóm tắt
Tài liệu tham khảo
S. K. Godunov, Equations of Mathematical Physics (Nauka, Moscow, 1971) [in Russian].
S. V. Gaidomak, “Spline-Collocation Method for Linear Singular Hyperbolic Systems,” Zhurn. Vychisl. Matem. i Matem. Fiz. 48(7), 1230–1249 (2008).
S. V. Gaidomak, “Three-Layer Finite-Difference Method for Linear Partial Differential-Algebraic Systems,” Differents. Uravneniya 46(4), 583–594 (2010).
S. V. Gaidomak, “Stability of an Implicit Difference Scheme for a Linear Differential-Algebraic System of Partial Differential Equations,” Zhurn. Vychisl. Matem. iMatem. Fiz. 50(4), 707–717 (2010).
V. F. Chistyakov, Algebraic-Differential Operators with Finite-Dimensional Kernel, (Sibirskaya Izadat. Firma RAN “Nauka”, Novosibirsk, 1996) [in Russian].
B. V. Verbitskii, “A Global Property of Matrix-Valued Functions That Depend on Several Variables,” Izv. Vyssh. Uchebn. Zaved. Mat. № 1, 8–17 (1978) [Soviet Mathematics (Iz. VUZ) 22 (1), 6–15 (1978)].
B. V. Verbitskii, “A Certain Global Property of Matrix-Valued Functions That Depend on Several Variables,” Usp. Mat. Nauk 28(5), 233–234 (1973).
B. V. Verbitskii, “A Global Property of Matrix Functions of One Variable,” Matem. Sbornik 91(1), 50–61 (1973).
F. R. Gantmacher, Theory of Matrices (Fizmatlit, Moscow, 2004) [in Russian].
P. Lancaster, The Theory of Matrices (Nauka, Moscow, 1982) [Russian translation].
V. Doležal, “The Existence of a Continuous Basis of a Certain Linear Subspace of E r Which Depends on a Parameter,” Cas. Pěst. Mat. 89, 466–468 (1964).
H. Gingold and P. F. Hsieh, “Globally Analytic Triangularization of a Matrix Function,” Linear Algebra Appl. 169, 75–101 (1992).
P. F. Hsieh and Y. Sibuya, “A Global Analysis of Matrices of Functions of Several Variables,” J. Math. Anal. Appl. 14, 332–340 (1966).