The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments
Tóm tắt
The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations.
Từ khóa
Tài liệu tham khảo
Marcus, D. S., Olsen, T. R., Ramaratnam, M. & Buckner, R. L. The extensible neuroimaging archive toolkit. Neuroinformatics 5, 11–33 (2007).
Das, S., Zijdenbos, A. P., Harlap, J., Vins, D. & Evans, A. C. LORIS: a web-based data management system for multi-center studies. Front. Neuroinform. 5, 37 (2011).
Scott, A. et al. COINS: An Innovative Informatics and Neuroimaging Tool Suite Built for Large Heterogeneous Datasets. Front. Neuroinform. 5, 33 (2011).
Book, G. A. et al. Neuroinformatics Database (NiDB)--a modular, portable database for the storage, analysis, and sharing of neuroimaging data. Neuroinformatics 11, 495–505 (2013).
Van Horn, J. D. & Toga, A. W. Is it time to re-prioritize neuroimaging databases and digital repositories? Neuroimage 47, 1720–1734 (2009).
Ozyurt, I. B. et al. Federated web-accessible clinical data management within an extensible neuroimaging database. Neuroinformatics 8, 231–249 (2010).
Keator, D. B. et al. A National Human Neuroimaging Collaboratory Enabled by the Biomedical Informatics Research. IEEE Trans. Inf. Technol. Biomed. 12, 162–172 (2008).
Nichols, B. N. & Pohl, K. M. Neuroinformatics Software Applications Supporting Electronic Data Capture, Management, and Sharing for the Neuroimaging Community. Neuropsychol. Rev. 25, 356–368 (2015).
Gadde, S. et al. XCEDE: An Extensible Schema for Biomedical Data. Neuroinformatics 10, 19–32 (2012).
Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E. & Yergeau, F. Extensible markup language (XML). World Wide Web Consortium Recommendation REC-xml-19980210 16, http://www.w3.org/TR/1998/REC-xml-19980210 (1998).
Grethe, J., Taylor, D., Potkin, S. & Birn, F. A general XML schema and SPM toolbox for storage of neuro-imaging results and anatomical labels. Neuroinformatics 4, 199–212 (2006).
NITRC: BXH/XCEDE Tools: Tool/Resource Info. Available at http://www.nitrc.org/projects/bxh_xcede_tools/ (Accessed: 18th November 2015).
Keator, D. B. et al. A General XML Schema and SPM Toolbox for Storage of Neuro-Imaging Results and Anatomical Labels. Neuroinformatics 4, 199–211 (2006).
Poldrack, R. A. et al. Toward open sharing of task-based fMRI data: the OpenfMRI project. Front. Neuroinform. 7, 1–12 (2013).
Cox, R. W. et al. A (Sort of) New Image Data Format Standard: NIfTI-1. in Proceedings of the 10th Annual Meeting of Organisation of Human Brain Mapping (2003).
Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front. Neuroinform. 5, 13 (2011).
Moreau, L. et al. Special Issue: The First Provenance Challenge. Concurr. Comput. 20, 409–418 (2008).
Mackenzie-Graham, A. J., Van Horn, J. D., Woods, R. P., Crawford, K. L. & Toga, A. W. Provenance in neuroimaging. Neuroimage 42, 178–195 (2008).
Crockford, D. JSON: The fat-free alternative to XML. in Proc. of XML 2006 (2006).
Nurseitov, N., Paulson, M., Reynolds, R. & Izurieta, C. Comparison of JSON and XML Data Interchange Formats: A Case Study. Caine 9, 157–162 (2009).
Poldrack, R. A. et al. The Cognitive Atlas: Toward a Knowledge Foundation for Cognitive Neuroscience. Front. Neuroinform 5, 1–11 (2011).
Turner, J. A. & Laird, A. R. The Cognitive Paradigm Ontology: Design and Application. Neuroinformatics 10, 57–66 (2011).
Keator, D. B. et al. Towards structured sharing of raw and derived neuroimaging data across existing resources. Neuroimage 82, 647–661 (2013).
Sporny, M. et al. Json-ld 1.0-a json-based serialization for linked data. W3C Working Draft, https://www.w3.org/TR/json-ld/ (2013).
Cohen, J. R. The development and generality of self-control (2009).
Wandell, B. A., Rokem, A., Perry, L. M., Schaefer, G. & Dougherty, R. F. Data management to support reproducible research. arXiv [q-bio.QM] (2015).
Cusack, R. et al. Automatic analysis (aa): efficient neuroimaging workflows and parallel processing using Matlab and XML. Front. Neuroinform 8, 90 (2014).
Gorgolewski, K. J., Margulies, D. S. & Milham, M. P. Making data sharing count: a publication-based solution. Front. Neurosci. 7, 9 (2013).
Cohen, J., & Poldrack, R. OpenfMRI ds000009 (2016)