The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments

Scientific data - Tập 3 Số 1
Krzysztof J. Gorgolewski1, Tibor Auer2, Vince D. Calhoun3, R. Cameron Craddock4, Samir Das5, Eugene Duff6, Guillaume Flandin7, Satrajit Ghosh8, Tristan Glatard5, Yaroslav Halchenko9, Daniel A. Handwerker10, Michael Hanke11, David B. Keator12, Xiangrui Li13, Zachary Michael14, Camille Maumet15, B. Nolan Nichols16, Thomas E. Nichols15, John Pellman17, Jean‐Baptiste Poline18, Ariel Rokem19, Gunnar Schaefer20, Vanessa Sochat21, William Triplett1, Jessica A. Turner22, Gaël Varoquaux23, Russell A. Poldrack1
1Department of Psychology, Stanford University, Stanford, California 94305 USA
2MRC Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, UK
3The Mind Research Network, Albuquerque, New Mexico 87131, USA
4Computational Neuroimaging Lab, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA
5McGill Centre for Integrative Neuroscience, Ludmer Centre, Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4
6FMRIB Centre, University of Oxford, Oxford, OX3 9DU, UK
7Wellcome Trust Centre for Neuroimaging, University College, London WC1N 3BG, UK
8McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts 02139, USA
9Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, 03755, USA
10Intramural Research Program, National Institute of Mental Health, Bethesda, Maryland 20814, USA
11Department of Psychology, Otto-von-Guericke-University, Magdeburg 39016, Germany
12Department of Psychiatry and Human Behavior, University of California, Irvine 92697, California, USA
13Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, 43210, Ohio, USA
14Squishymedia, Portland, Oregon 97232, USA
15WMG, University of Warwick, Coventry CV4 7AL, UK
16Center for Health Sciences, SRI International, Menlo Park, California 94025, USA
17Center for the Developing Brain, Child Mind Institute, New York, New York 10022, USA
18Henry Wheeler Jr. Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
19The University of Washington eScience Institute, Seattle, Washington 98195, USA
20Flywheel Exchange, LLC, Minneapolis, Minnesota 55405, USA
21Program in Biomedical Informatics, Stanford University, Stanford, California 94305, USA
22Department of Psychology & the Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302, USA
23Parietal team, INRIA Saclay, Palaiseau 91120, FR

Tóm tắt

AbstractThe development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations.

Từ khóa


Tài liệu tham khảo

Smith, K. Brain imaging: fMRI 2.0. Nature 484, 24–26 (2012).

Marcus, D. S., Olsen, T. R., Ramaratnam, M. & Buckner, R. L. The extensible neuroimaging archive toolkit. Neuroinformatics 5, 11–33 (2007).

Das, S., Zijdenbos, A. P., Harlap, J., Vins, D. & Evans, A. C. LORIS: a web-based data management system for multi-center studies. Front. Neuroinform. 5, 37 (2011).

Scott, A. et al. COINS: An Innovative Informatics and Neuroimaging Tool Suite Built for Large Heterogeneous Datasets. Front. Neuroinform. 5, 33 (2011).

Book, G. A. et al. Neuroinformatics Database (NiDB)--a modular, portable database for the storage, analysis, and sharing of neuroimaging data. Neuroinformatics 11, 495–505 (2013).

Van Horn, J. D. & Toga, A. W. Is it time to re-prioritize neuroimaging databases and digital repositories? Neuroimage 47, 1720–1734 (2009).

Ozyurt, I. B. et al. Federated web-accessible clinical data management within an extensible neuroimaging database. Neuroinformatics 8, 231–249 (2010).

Keator, D. B. et al. A National Human Neuroimaging Collaboratory Enabled by the Biomedical Informatics Research. IEEE Trans. Inf. Technol. Biomed. 12, 162–172 (2008).

Nichols, B. N. & Pohl, K. M. Neuroinformatics Software Applications Supporting Electronic Data Capture, Management, and Sharing for the Neuroimaging Community. Neuropsychol. Rev. 25, 356–368 (2015).

Schwartz, Y. et al. PyXNAT: XNAT in Python. Front. Neuroinform. 6, 1–11 (2012).

Gadde, S. et al. XCEDE: An Extensible Schema for Biomedical Data. Neuroinformatics 10, 19–32 (2012).

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E. & Yergeau, F. Extensible markup language (XML). World Wide Web Consortium Recommendation REC-xml-19980210 16, http://www.w3.org/TR/1998/REC-xml-19980210 (1998).

Grethe, J., Taylor, D., Potkin, S. & Birn, F. A general XML schema and SPM toolbox for storage of neuro-imaging results and anatomical labels. Neuroinformatics 4, 199–212 (2006).

NITRC: BXH/XCEDE Tools: Tool/Resource Info. Available at http://www.nitrc.org/projects/bxh_xcede_tools/ (Accessed: 18th November 2015).

Keator, D. B. et al. A General XML Schema and SPM Toolbox for Storage of Neuro-Imaging Results and Anatomical Labels. Neuroinformatics 4, 199–211 (2006).

Poldrack, R. A. et al. Toward open sharing of task-based fMRI data: the OpenfMRI project. Front. Neuroinform. 7, 1–12 (2013).

Cox, R. W. et al. A (Sort of) New Image Data Format Standard: NIfTI-1. in Proceedings of the 10th Annual Meeting of Organisation of Human Brain Mapping (2003).

Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front. Neuroinform. 5, 13 (2011).

Moreau, L. et al. Special Issue: The First Provenance Challenge. Concurr. Comput. 20, 409–418 (2008).

Zhong, H. et al. in Brain and Health Informatics 439–449 (Springer International Publishing, 2013).

Mackenzie-Graham, A. J., Van Horn, J. D., Woods, R. P., Crawford, K. L. & Toga, A. W. Provenance in neuroimaging. Neuroimage 42, 178–195 (2008).

Crockford, D. JSON: The fat-free alternative to XML. in Proc. of XML 2006 (2006).

Nurseitov, N., Paulson, M., Reynolds, R. & Izurieta, C. Comparison of JSON and XML Data Interchange Formats: A Case Study. Caine 9, 157–162 (2009).

Poldrack, R. A. et al. The Cognitive Atlas: Toward a Knowledge Foundation for Cognitive Neuroscience. Front. Neuroinform 5, 1–11 (2011).

Turner, J. A. & Laird, A. R. The Cognitive Paradigm Ontology: Design and Application. Neuroinformatics 10, 57–66 (2011).

Keator, D. B. et al. Towards structured sharing of raw and derived neuroimaging data across existing resources. Neuroimage 82, 647–661 (2013).

Sporny, M. et al. Json-ld 1.0-a json-based serialization for linked data. W3C Working Draft, https://www.w3.org/TR/json-ld/ (2013).

Cohen, J. R. The development and generality of self-control (2009).

Wandell, B. A., Rokem, A., Perry, L. M., Schaefer, G. & Dougherty, R. F. Data management to support reproducible research. arXiv [q-bio.QM] (2015).

Cusack, R. et al. Automatic analysis (aa): efficient neuroimaging workflows and parallel processing using Matlab and XML. Front. Neuroinform 8, 90 (2014).

Gorgolewski, K. J., Margulies, D. S. & Milham, M. P. Making data sharing count: a publication-based solution. Front. Neurosci. 7, 9 (2013).

Cohen, J., & Poldrack, R. OpenfMRI ds000009 (2016)