Biotransformation của ibuprofen thành trihydroxyibuprofen trong bùn hoạt tính và bởi Variovorax Ibu-1

Biodegradation - Tập 26 - Trang 105-113 - 2015
Robert W. Murdoch1,2, Anthony G. Hay1,3
1Graduate Program in Environmental Toxicology, Institute for Comparative and Environmental Toxicology, Cornell University, Ithaca, USA
2Environmental Engineering Department, Middle East Technical University, Ankara, Turkey
3Department of Microbiology, Cornell University, Ithaca, USA

Tóm tắt

Một chủng vi khuẩn đã được phân lập từ bùn hoạt tính với khả năng sử dụng ibuprofen làm nguồn carbon và năng lượng duy nhất. Phân tích hệ gen 16S rRNA đã xếp chủng này vào chi Variovorax thuộc nhóm β-proteobacteria. Khi phát triển trên môi trường chứa ibuprofen, vi khuẩn tích lũy một hợp chất trung gian có màu vàng tạm thời, hợp chất này biến mất khi acid hóa, một đặc điểm phù hợp với các chuyển hóa phân cắt vòng meta. Phân tích GC/MS của siêu natri đã được biến đổi cho thấy hai phổ hợp lệ cho trihydroxyibuprofen mang đầy đủ ba nhóm hydroxyl trên vòng thơm. Những chuyển hóa này chỉ được phát hiện khi 3-fluorocatechol, một chất ức chế phân cắt vòng meta, được thêm vào các văn hóa Ibu-1 và sau đó siêu natri được biến đổi với acid anhydride và diazomethane. Những phát hiện này gợi ý khả năng chuyển hóa ibuprofen có thể xảy ra thông qua con đường phân cắt vòng meta trihydroxyibuprofen. Các phổ giống hệt, phù hợp với các chuyển hóa trihydroxyibuprofen đã hydroxyl hóa được cho là này, cũng được thu được từ bùn hoạt tính có bổ sung ibuprofen, nhưng chỉ khi nó bị đầu độc bởi 3-fluorocatechol. Sự hiện diện của các chuyển hóa trihydroxylated giống nhau trong cả bùn hoạt tính đã bổ sung và siêu natri của văn hóa cho thấy rằng con đường phân cắt vòng extradiol trihydroxyibuprofen cho phân hủy ibuprofen có thể có ý nghĩa môi trường.

Từ khóa

#ibuprofen #trihydroxyibuprofen #Variovorax #phân hủy môi trường #bùn hoạt tính

Tài liệu tham khảo

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410 Bartels I, Knackmuss HJ, Reineke W (1984) Suicide inactivation of catechol 2,3 dioxygenase from Pseudomonas putida MT-2 by 3-halocatechols. Appl Environ Microbiol 47:500–505 Blakley ER (1977) The catabolism of l-tyrosine by an Arthrobacter sp. Can J Microbiol 23:1128–1139 Bruland N, Wübbeler JH, Steinbüchel A (2009) 3-Mercaptopropionate dioxygenase, a cysteine dioxygenase homologue, catalyzes the initial step of 3-mercaptopropionate catabolism in the 3,3-thiodipropionic acid-degrading bacterium Variovorax paradoxus. J Biol Chem 284:660–672. doi:10.1074/jbc.M806762200 Buser HR, Poiger T, Muller MD (1999) Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environ Sci Technol 33:2529–2535 Butler CS, Mason JR (1997) Structure-function analysis of the bacterial aromatic ring-hydroxylating dioxygenases. In: Poole RK (ed) Advances in microbial physiology, vol 38. Academic Press Limited, London Chen Y, Rosazza JPN (1994) Microbial transformation of ibuprofen by a Nocardia species. Appl Environ Microbiol 60:1292–1296 D’Ascenzo G, DiCorcia A, Gentili A, Mancini R, Mastropasqua R, Nazzari M, Samperi R (2003) Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. Sci Total Environ 302:199–209 Dejonghe W et al (2003) Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading Variovorax strain. Appl Environ Microbiol 69:1532–1541. doi:10.1128/aem.69.3.1532-1541.2003 Farre M et al (2001) Determination of drugs in surface water and wastewater samples by liquid chromatography-mass spectrometry: methods and preliminary result including toxicity studies with Vibrio fischeri. J Chromatogr A 938:187–197 Ferrandez A, Minambres B, Garcia B, Olivera Elias R, Luengo J (1998) Catabolism of phenylacetic acid in Escherichia coli. Characterization of a new aerobic hybrid pathway. J Biol Chem 273:25974–25986 Ferrando-Climent L, Collado N, Buttiglieri G, Gros M, Rodriguez-Roda I, Rodriguez-Mozaz S, Barceló D (2012) Comprehensive study of ibuprofen and its metabolites in activated sludge batch experiments and aquatic environment. Sci Total Environ 438:404–413 Ferris M, Muyzer G, Ward D (1996) Denaturing gradient gel electrophorsis profiles of 16S RNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346 Fujimoto J, Tran L, Sowers L (1997) Synthesis and cleavage of oligodeoxynucleotides containing a 5-hydroxyuracil residue at a defined site. Chem Res Toxicol 10:1254–1258 Futamata H, Nagano Y, Watanabe K, Hiraishi A (2005) Unique kinetic properties of phenol-degrading Variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture. appl environ Microbiol 71:904–911. doi:10.1128/aem.71.2.904-911.2005 Giovanni G, Neilson J, Pepper I, Sinclair N (1996) Plasmid diversity within a 2,4-dichlorophenoxyacetic acid degrading Variovorax paradoxus population isolated from a contaminated soil. J Environ Sci Health A31:963–976 Haigler B, Johnson G, Suen W, Spain J (1999) Biochemical and genetic evidence for meta-ring cleavage of 2,4,5-trihydroxytoluene in Burkholderia sp. strain DNT. J Bacteriol 181:965–972 Hanlon GW, Kooloobandi A, Hutt AJ (1994) Microbial metabolism of 2-arylpropionic acids: effect of environment on the metabolism of ibuprofen by Verticillium lecanii. J Appl Microbiol 76:442–447 Harayama S, Timmis K (1989) Catabolism of aromatic hydrocarbons by Pseudomonas. In: Hopwood D, Chater K (eds) Genetics of bacterial diversity. Academic Press Limited, San Diego Hollender J, Hopp J, Dott W (1997) Degradation of 4-chlorophenol via the meta cleavage pathway by comamonas testosteroni JH5. Appl Environ Microbiol 63:4567–4572 Jeon CO, Park W, Padmanabhan P, DeRito C, Snape JR, Madsen EL (2003) Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci 100:13591–13596. doi:10.1073/pnas.1735529100 Jones OA, Lester JN, Voulvoulis N (2005) Pharmaceuticals: a threat to drinking water? Trends Biotechnol 23:163–167 Kinney CA, Furlong ET, Werner SL, Cahill JD (2006) Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water. Environ Toxicol Chem 25:317–326 Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211 Krieg NR (1981) Enrichment and Isolation. In: Gerhardt P (ed) Manual of methods for general bacteriology. American Society for Microbiology, Washington, pp 112–142 Lane DJ (1991) 16S/23S rRNA sequencing. In: Goodfellow ESM (ed) Nucleic acid techniques in bacterial systematic. Wiley, Chichester, pp 115–175 Larsson E, al-Hamimi S, Jönsson JÅ (2014) Behaviour of nonsteroidal anti-inflammatory drugs and eight of their metabolites during wastewater treatment studied by hollow fibre liquid phase microextraction and liquid chromatography mass spectrometry. Sci Total Environ 485-486:300–308 Lee EJD, Williams K, Day R, Graham G, Champion D (1985) Stereoselective disposition of ibuprofen enantiomers in man. Br J Clin Pharmacol 19:669–674 Marco-Urrea E, Pérez-Trujillo M, Vicent T, Caminal G (2009) Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74:765–772 Mars AEK T, Kaschabek SR, Van Agteren MH, Janssen DB, Reineke W (1997) Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene. J Bacteriol 179:4530–4537 McCullar M, Brenner R, Adams R, Focht D (1994) Construction of a novel polychlorinated biphenyl-degrading bacterium; utilization of 3,4′-dichlorobiphenyl by Pseudomonas acidovorans M3GY. Appl Environ Microbiol 60:3833–3839 Miwa H, Ahmed I, Yoon J, Yokota A, Fujiwara T (2008) Variovorax boronicumulans sp. nov., a boron-accumulating bacterium isolated from soil. Int J Syst Evol Microbiol 58:286–289. doi:10.1099/ijs.0.65315-0 Murdoch RW, Hay AG (2005) Formation of catechols via removal of acid side chains from ibuprofen and related aromatic acids. Appl Environ Microbiol 71:6121–6125 Murdoch RW, Hay AG (2013) Genetic and chemical characterization of ibuprofen degradation by Sphingomonas Ibu-2. Microbiology 159:621–632. doi:10.1099/mic.0.062273-0 Olaniran AO, Igbinosa EO (2011) Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere 83:1297–1306 Olivera ER et al (1998) Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc Natl Acad Sci USA 95:6419–6424 Pedersen JA, Yeager MA, Suffet IH (2003) Xenobiotic organic compounds in runoff from fields irrigated with treated wastewater. J Agric Food Chem 51:1360–1372 Pedersen JA, Soliman M, Suffet IH (2005) Human pharmaceuticals, hormones, and personal care product ingredients in runoff from agricultural fields irrigated with treated wastewater. J Agric Food Chem 53:1625–1632 Quast C et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi:10.1093/nar/gks1219 Quintana JB, Weiss S, Reemtsma T (2005) Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Res 39:2654–2664 Richardson ML, Bowron JM (1985) The fate of pharmaceutical chemicals in the aquatic environment. J Pharm Pharmacol 37:1–12 Rudy AC, Knight PM, Brater DC, Hall SD (1991) Stereoselective metabolism of ibuprofen in humans: administration of R-S- and racemic ibuprofen. J Pharmacol Exp Ther 259:1133–1139 Santos LHMLM, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175:45–95 Satola B, Wübbeler J, Steinbüchel A (2013) Metabolic characteristics of the species Variovorax paradoxus. Appl Microbiol Biotechnol 97:541–560. doi:10.1007/s00253-012-4585-z Satsuma K (2010) Mineralisation of the herbicide linuron by Variovorax sp. strain RA8 isolated from Japanese river sediment using an ecosystem model (microcosm) Pest. Manage Sci 66:847–852. doi:10.1002/ps.1951 Schweigert N, Zehnder A, Eggen R (2001) Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals Minireview. Environ Microbiol 3:81–91 Siemens J, Huschek G, Siebe C, Kaupenjohann M (2008) Concentrations and mobility of human pharmaceuticals in the world’s largest wastewater irrigation system Mexico City-Mezquital Valley. Water Res 42:2124–2134 Smejkal C, Vallaeys T, Burton S, Lappin-Scott H (2001) Substrate specificity of chlorophenoxyalkanoic acid-degrading bacteria is not dependent upon phylogenetically related tfdA gene types. Biol Fertil Soils 33:507–513 Snellinx Z, Taghavi S, Vangronsveld J, van der Lelie D (2003) Microbial consortia that degrade 2,4-DNT by interspecies metabolism: isolation and characterisation. Biodegradation 14:19–29. doi:10.1023/A:1023539104747 Sørensen SR, Simonsen A, Aamand J (2009) Constitutive mineralization of low concentrations of the herbicide linuron by a Variovorax sp. strain. FEMS Microbiol Lett 292:291–296. doi:10.1111/j.1574-6968.2009.01501.x Sparnins VL, Chapman PJ (1976) Catabolism of l-tyrosine by the homoprotocatechuate pathway in gram positive bacteria. J Bacteriol 127:362–366 Stumpf M, Ternes TA, Wilken RD, Rodrigues SV, Baumann W (1999) Polar drug residues in sewage and natural waters in the state of Rio de Janeiro Brazil. Sci Total Environ 225:135–141 Teufel R et al (2010) Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc Natl Acad Sci USA 107:14390–14395 Toyama T et al (2010) Isolation and characterization of 4-tert-butylphenol-utilizing Sphingobium fuliginis strains from Phragmites australis rhizosphere sediment. Appl Environ Microbiol 76:6733–6740. doi:10.1128/aem.00258-10 Vallaeys T, Albino L, Soulas G, Wright A, Weightman A (1998) Isolation and characterization of a stable 2,4-dichlorophenoxyacetic acid degrading bacterium Variovorax paradoxus, using chemostat culture. Biotechnol Lett 20:1073–1076 van den Tweel WJJ, Smits JP, De Bont JAM (1988) Catabolism of DL-alpha phenylhydracrylic, phenylacetic, and 3 and 4-hydroxyphenylacetic acid via homogentisic acid in a Flavobacterium Sp. Arch Microbiol 149:207–213 Wang Y, Gu J-D (2006) Degradability of dimethyl terephthalate by Variovorax paradoxus T4 and Sphingomonas yanoikuyae DOS01 isolated from deep-ocean sediments. Ecotoxicology 15:549–557. doi:10.1007/s10646-006-0093-1 Wei M, Zhang J-J, Liu H, Zhou N-Y (2010) para-Nitrophenol 4-monooxygenase and hydroxyquinol 1,2-dioxygenase catalyze sequential transformation of 4-nitrocatechol in Pseudomonas sp. strain WBC-3. Biodegradation 21:915–921. doi:10.1007/s10532-010-9351-2 Winkler M, Lawrence JR, Neu TR (2001) Selective degradation of ibuprofen and clofibric acid in two model river biofilm systems. Water Res 35:3197–3205 Wojcieszyńska D, Domaradzka D, Hupert-Kocurek K, Guzik U (2014) Bacterial degradation of naproxen–Undisclosed pollutant in the environment. J Environ Manage 145:157–161 Xu J, Wu L, Chen W, Jiang P, Chang AC-S (2009) Pharmaceuticals and personal care products (PPCPS), and endocrine disrupting compounds (EDCS) in runoff from a potato field irrigated with treated wastewater in Southern California. J Health Sci 55:306–310 Yilmaz P et al (2014) The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res 42:D643–D648. doi:10.1093/nar/gkt1209 Zwiener C, Seeger S, Glauner T, Frimmel FH (2002) Metabolites from the biodegradation of pharmaceutical residues of ibuprofen in biofilm reactors and batch experiments. Anal Bioanal Chem 372:569–575