The biological transformation of industrial manufacturing – Technologies, status and scenarios for a sustainable future of the German manufacturing industry

Journal of Manufacturing Systems - Tập 54 - Trang 50-61 - 2020
R. Miehe1, T. Bauernhansl1, M. Beckett2, C. Brecher3, A. Demmer3, W.-G. Drossel4, P. Elfert5, J. Full1, A. Hellmich4, J. Hinxlage5, J. Horbelt1, G. Jutz6, S. Krieg2, C. Maufroy1, M. Noack4, A. Sauer1, U. Schließmann2, P. Scholz3, O. Schwarz1, M. ten Hompel5
1Fraunhofer Institute for Manufacturing Engineering and Automation, Nobelstrasse 12, Stuttgart, Germany
2Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstrasse 12, Stuttgart, Germany
3Fraunhofer Institute for Production Technology, Steinbachstr. 17, 52074 Aachen, Germany
4Fraunhofer Institute for Machine Tools and Forming Technology, Reichenhainer Strasse 88, 09126 Chemnitz, Germany
5Fraunhofer Institute for Material Flow and Logistics, Joseph-von-Fraunhofer-Strasse 2-4, 44227 Dortmund, Germany
6Fraunhofer Institute for Mechanics of Materials, Wöhlerstrasse 11, 79108 Freiburg, Germany

Tài liệu tham khảo

Bundesministerium für Wirtschaft und Energie, editor. Fakten zum deutschen Außenhandel. Berlin; 2018. Available: https://www.bmwi.de/Redaktion/DE/Publikationen/Aussenwirtschaft/fakten-zum-deuschen-aussenhandel.html (Accessed: 21.12.2018). Statistisches Bundesamt , editor. Forschung und Entwicklung – Interne Ausgaben für Forschung und Entwicklung nach Sektoren in Millionen Euro. Berlin; 2018. Available: https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/BildungForschungKultur/ForschungEntwicklung/Tabellen/ForschungEntwicklungSektoren.html;jsessionid=3EC3C021D2B15EF6653A1FB5721B4DB5.InternetLive2. Sustainable Europe Research Institute (SERI) / Vienna University of Economics and Business (WU Vienna), 2011 Fischer-Kowalski, 2011 Oberösterreich, 2013 Commerzbank, 2011 Cooper, 2006, Life cycle assessment practitioner survey: summary of results, J Ind Ecol, 10, 12, 10.1162/jiec.2006.10.4.12 Meadows, 1972 Berkhout, 2000, Defining the rebound effect, Energy Policy, 28, 425, 10.1016/S0301-4215(00)00022-7 Greening, 2000, Energy efficiency and consumption, Energy Policy, 28, 389, 10.1016/S0301-4215(00)00021-5 Sorrell, 2008, The rebound effect, Ecol Econ, 65, 636, 10.1016/j.ecolecon.2007.08.013 Baumast, 2013, Perspektive nachhaltigkeit., 360 Nachhaltigkeitsethik, 2011, Normativer Gestaltungsansatz für eine global zukunftsfähige Entwicklung in Theorie und Praxis Sachs, 1993, Die vier E’s: Merkposten für einen maßvollen Wirtschaftsstil, Politische Ökologie, 33, 69 Gandenberger, 2011, 249 Deutsche Akademie der Technikwissenschaften, editor. Innovationspotenziale der Biotechnologie. München; 2017. Deutsche Akademie der Naturforscher Leopoldina e.V., editor. Die Synthetische Biologie in der öffentlichen Meinungsbildung - Überlegungen im Kontext der wissenschaftsbasierten Beratung von Politik und Öffentlichkeit. Halle; 2015. ISBN: 978-3-8047-3325-1. Zinke, 2019, Telgheder M: Die Biologisierung der Welt Smyth, 2011, Sustainability and the bioeconomy: policy recommendations from the 15th ICABR conference, AgBioForum, 14, 180 Wesseler, 2011, The future of governance in the global bioeconomy: policy, regulation, and investment challenges for the biotechnology and bioenergy sectors, AgBioForum, 13, 288 Birch, 2019, Neoliberal bio-economies?, 64 Patermann C. Innovation, Wachstum, Bioökonomie - Europa wird sich sputen müs-sen, um in der Umsetzung der Bioökonomie im industriellen Maßstab mitzuhalten. In: Blickwinkel. Available: https://www.brain-biotech.de/content/blickwinkel/1314q2_growth/1314_q2_Wachstum_Patermann.pdf (Accessed: 21.12.2018). Byrne, 2018, Biologicalisation: Biological transformation in manufacturing, Cirp J Manuf Sci Technol, 21, 1, 10.1016/j.cirpj.2018.03.003 Miehe, 2018, The biological transformation of the manufacturing industry - envisioning biointelligent value adding, Procedia CIRP, 72, 739, 10.1016/j.procir.2018.04.085 Miehe, 2018, Biointelligenz im Produkt und in der Produktion, 621 Dalkey, 1963, An experimental application of the delphi method to the use of experts, Manage Sci, 9, 458, 10.1287/mnsc.9.3.458 Brown, 1968 Sackman, 1974 Linstone, 1975 Gausemeier, 2009 Mayer, 2009 Szenariotechnik, 2006 Graf, 2003 Fink, 2001 Von Reibnitz, 1992 Bradfield, 2005, The origins and evolution of scenario techniques in long range business planning, Futures, 37, 795, 10.1016/j.futures.2005.01.003 Amer, 2013, A review of scenario planning, Futures, 46, 23, 10.1016/j.futures.2012.10.003 Hellinga H W, Looger LL. Biosensor. U.S. Patent No. 9,625,458. 18 Apr. 2017. Guvendiren, 2016, Designing biomaterials for 3D printing, ACS Biomater Sci Eng, 2, 1679, 10.1021/acsbiomaterials.6b00121 Pulz, 2001, Photobioreactors: production systems for phototrophic microorganisms, Appl Microbiol Biotechnol, 57, 287, 10.1007/s002530100702 Wang, 2017, Optogenetic regulation of artificial microRNA improves H 2 production in green alga Chlamydomonas reinhardtii, Biotechnol Biofuels, 10.1, 257, 10.1186/s13068-017-0941-7 Yizhar, 2018, 25 Miyazaki, 2008, Enzymatic processing in microfluidic reactors, Biotechnol Genet Eng Rev, 25, 405, 10.5661/bger-25-405 Zhu, 2003, Recycling of spent nickel–cadmium batteries based on bioleaching process, Waste Manag, 23, 703, 10.1016/S0956-053X(03)00068-0 Wegst, 2004, The mechanical efficiency of natural materials, Philos Mag, 84, 2167, 10.1080/14786430410001680935 Lenz, 2005, Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology, Biomacromolecules, 6, 1, 10.1021/bm049700c Dahmen, 2018, Challenges and possible solutions for enhancing the workplaces of the future by integrating smart and adaptive exoskeletons, Procedia CIRP, 67, 268, 10.1016/j.procir.2017.12.211 Cherubini, 2010, The biorefinery concept: using biomass instead of oil for producing energy and chemicals, Energy Convers Manage, 51, 1412, 10.1016/j.enconman.2010.01.015 Schiebahn, 2013, 813 Cusick, 2010, A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters, Int J Hydrogen Energy, 35, 8855, 10.1016/j.ijhydene.2010.06.077 Bartolo, 2011, BioCell Printing: Integrated automated assembly system for tissue engineering constructs, CIRP Annals, 60, 271, 10.1016/j.cirp.2011.03.116 Malshe, 2013, Bio-inspired functional surfaces for advanced applications, CIRP Ann Manuf Technol, 62, 607, 10.1016/j.cirp.2013.05.008 Mrosik, 2019, Ingenuity inspired by biology Khoo, 2015, 3D printing of smart materials. A review on recent progresses in 4D printing, Virtual Phys Prototyp, 10, 103, 10.1080/17452759.2015.1097054 Praetorius, 2017, Biotechnological mass production of DNA origami, Nature, 552, 84, 10.1038/nature24650 Gao, 2016, 4D bioprinting for biomedical applications, Trends Biotechnol, 34, 746, 10.1016/j.tibtech.2016.03.004 Helmholtz. Zentrum für Umweltforschung. Biosensoren - Entwicklung und Applikation. 2017. Available: https://www.ufz.de/index.php?de=39398 (Accessed: 31.07.18). DFG. Projekt, 2007 Wander, 2014, Brain-computer interfaces: a powerful tool for scientific inquiry, Curr Opin Neurobiol, 10.1016/j.conb.2013.11.013 Paninski, 2018, Neural data science: accelerating the experiment-analysis-theory cycle in large-scale neuroscience, Curr Opin Neurobiol, 10.1016/j.conb.2018.04.007 Deisseroth, 2011, Optogenetics, Nature Method, 8, 26, 10.1038/nmeth.f.324 Pastrana, 2011, Optogenetics: Controlling cell function with light, Nat Methods, 10.1038/nmeth.f.323 Berndt, 2016, Expanding the optogenetics toolkit, Science, 349, 590, 10.1126/science.aac7889 Sommeregger, 2017, Quality by control: towards model predictive control of mammalian cell culture bioprocesses, Biotechnol J, 10.1002/biot.201600546 Whitford, 2017, The era of digital biomanufacturing, Bioprocess Int Whitford, 2017, Digital biomanufacturing supporting vascularization in 3D bioprinting, Int J Bioprinting, 3, 1, 10.18063/IJB.2017.01.002 Cameron, 2014, A brief history of synthetic biology, Nat Rev Microbiol, 10.1038/nrmicro3239 Giret, 2015, Sustainability in manufacturing operations scheduling: a state of the art review, J Manuf Syst, 37, 126, 10.1016/j.jmsy.2015.08.002 ProcessNet Dechema, 2017, Towards model predictive control of mammalian cell culture bioprocesses, Biotechnol J Dalavi, 2016, Optimal sequence of hole-making operations using particle swarm optimization and modified shuffled frog leaping algorithm, Mater Sci Eng R Rep, 36, 187 Ambriz, 2017, Material handling and registration for an additive manufacturing-based hybrid system, J Manuf Syst, 45, 17, 10.1016/j.jmsy.2017.07.003 Wells, 2013, A bio-inspired approach for self-correcting compliant assembly systems, J Manuf Syst, 32, 464, 10.1016/j.jmsy.2013.03.002 Brecher, 2014 Qi, 2019, Enabling technologies and tools for digital twin, J Manuf Syst Klocke, 2017 Uhlemann, 2017, The digital twin: realizing the cyber-physical production system for industry 4.0, Procedia CIRP, 61, 335, 10.1016/j.procir.2016.11.152 Váncza, 2017, Cyber-physical manufacturing in the light of Professor Kanji Ueda’s legacy, Procedia CIRP, 63, 631, 10.1016/j.procir.2017.04.059 Werfel, 2014, Designing collective behaviour in a termite-inspired robot construction team, Science, 343, 754, 10.1126/science.1245842 Parker, 2003, Blind bulldozing: multiple robot nest construction Schatten, 2011, Biomimetics in modern organizations. Laws or methaphors?, Interdiscip Descr Complex Syst, 9, 39 Ueda, 2001, Line-less production system using self-organization: a case study for BMS, CIRP Ann Manuf Technol, 50, 319, 10.1016/S0007-8506(07)62130-1 Ambriz, 2017, Material handling and registration for an additive manufacturing-based hybrid system, J Manuf Syst, 45, 17, 10.1016/j.jmsy.2017.07.003 Chia, 2015, Recent advances in 3D printing of biomaterials, J Biol Eng, 9, 10.1186/s13036-015-0001-4 Jang, 2018, Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics, Biomaterials, 156, 88, 10.1016/j.biomaterials.2017.11.030 Castro, 2017, Current developments in multifunctional smart materials for 3D/4D bioprinting, Curr Opin Biomed Eng, 10.1016/j.cobme.2017.04.002 Shin, 2017, Review of 4D printing materials and their properties, Int J Precis Eng Manuf Green Technol, 4, 349, 10.1007/s40684-017-0040-z Maydl, 1987 Gieseke, 2007 Kucukoglu, 2018, Application of the artificial neural network method to detect defective assembling processes by using a wearable technology, J Manuf Syst, 163, 10.1016/j.jmsy.2018.10.001 Moghaddam, 2018, Reference architectures for smart manufacturing: a critical review, J Manuf Syst, 49, 215, 10.1016/j.jmsy.2018.10.006 Chou, 2013, A bio-inspired mobile agent-based integrated system for flexible autonomic job shop scheduling, J Manuf Syst, 32, 752, 10.1016/j.jmsy.2013.01.005 Munneke, 2018, On the electrode positioning for bipolar EMG recording of forearm extensor and flexor muscle activity after transcranial magnetic stimulation, J Electromyogr Kinesiol, 40, 23, 10.1016/j.jelekin.2018.02.010 Reinhart, 2017 Dalchau, 2018, Computing with biological switches and clocks, Nat Comput, 17 Kar, 2016, Bio inspired computing – a review of algorithms and scope of applications, Expert Syst Appl, 59, 20, 10.1016/j.eswa.2016.04.018 Navlakha, 2011, Algorithms in nature: the convergence of systems biology and computational thinking, Mol Syst Biol, 7, 546, 10.1038/msb.2011.78 Bonnet, 2013, Amplifying genetic logic gates, Science, 340, 599, 10.1126/science.1232758 Sharp, 2018, A survey of the advancing use and development of machine learning in smart manufacturing, J Manuf Syst, 48, 170, 10.1016/j.jmsy.2018.02.004 Wang, 2018, Deep learning for smart manufacturing: methods and applications, J Manuf Syst, 48, 144, 10.1016/j.jmsy.2018.01.003 Lv, 2018, From biomaterial-based data storage to bio-inspired artificial synapse, Mater Today, 21, 537, 10.1016/j.mattod.2017.12.001 NCBI Resource Coordinators, 2012, Resources of the national center for biotechnology information, Nucleic Acids Res, 41, D8, 10.1093/nar/gks1189 Paul, 2018 May, 2017, Companies in the cloud: digitizing lab operations, Science, 355, 532, 10.1126/science.355.6324.532 Life, 2008, Logic and information, Nature, 454, 424, 10.1038/454424a Wang, 2018, Deep learning for smart manufacturing: methods and applications, J Manuf Syst, 48, 144, 10.1016/j.jmsy.2018.01.003 Kitano, 2004, Biological robustness, Nature, 826 Dressler, 2010, A survey on bio-inspired networking, Comput Netw, 54, 881, 10.1016/j.comnet.2009.10.024 Church, 2012, Next-generation digital information storage in DNA, Science, 337, 1628, 10.1126/science.1226355 Daniel, 2013, Synthetic analog computation in living cells, Nature, 497, 619, 10.1038/nature12148 Lee, 2014, Application of intelligent data management in resource allocation for effective operation of manufacturing systems, J Manuf Syst, 33, 412, 10.1016/j.jmsy.2014.02.002 De Medeiros, 2017, Conceptual design of a self-sufficient hybrid biorefinery for syngas production and fermentation to ethanol, J Clean Prod Mashhadi, 2017, Optimal sorting policies in remanufacturing systems: application of product life-cycle data in quality grading and end-of-use recovery, J Manuf Syst, 43, 15, 10.1016/j.jmsy.2017.02.006 Tao, 2018, Data-driven smart manufacturing, J Manuf Syst, 48, 157, 10.1016/j.jmsy.2018.01.006 Adane, 2019, Application of system dynamics for analysis of performance of manufacturing systems, J Manuf Syst, 53, 212, 10.1016/j.jmsy.2019.10.004 Lynch, 2018 Amarasekara, 2017, Briquetting and carbonization of naturally grown algae biomass for low-cost fuel and activated carbon production, Fuel, 208, 612, 10.1016/j.fuel.2017.07.034 Zhen, 2017, Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: current situation, challenges and future perspectives, Prog Energy Combust Sci, 63, 119, 10.1016/j.pecs.2017.07.003 Sinemus, 2007, Transparent communication strategy on GMOs: will it change public opinion?, Biotechnol J, 2, 141, 10.1002/biot.200700133 Kranzberg, 1986, Technology and history: kranzberg’s laws, Technol Cult, 27, 544, 10.2307/3105385 Hengstler, 2016, Applied artificial intelligence and trust—the case of autonomous vehicles and medical assistance devices, Technol Forecast Soc Change, 105, 105, 10.1016/j.techfore.2015.12.014