The biogeography of fungal communities in paddy soils is mainly driven by geographic distance

Springer Science and Business Media LLC - Tập 18 Số 5 - Trang 1795-1805 - 2018
Chaolei Yuan1, Limei Zhang2, Hang‐Wei Hu3, Jun‐Tao Wang2, Ju-Pei Shen2, Ji‐Zheng He2
1Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
2State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
3Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Vic 3010, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allison SD, Hanson CA, Treseder KK (2007) Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol Biochem 39(8):1878–1887. https://doi.org/10.1016/j.soilbio.2007.02.001

Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10(1):189. https://doi.org/10.1186/1471-2180-10-189

Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

Chapin III FS, Matson PA, Vitousek P (2011) Principles of terrestrial ecosystem ecology. 2ed Edition. Springer, DOI: https://doi.org/10.1007/978-1-4419-9504-9

Chemidlin Prévost-Bouré N, Christen R, Dequiedt S, Mougel C, Lelièvre M, Jolivet C, Shahbazkia HR, Guillou L, Arrouays D, Ranjard L (2011) Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS One 6(9):e24166. https://doi.org/10.1371/journal.pone.0024166

Clarke KR, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol Prog Ser 92:205–219. https://doi.org/10.3354/meps092205

Compton JE, Boone RD (2000) Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81(8):2314–2330.

Curlevski NJA, Xu ZH, Anderson IC, Cairney JWG (2010) Converting Australian tropical rainforest to native Araucariaceae plantations alters soil fungal communities. Soil Biol Biochem 42(1):14–20. https://doi.org/10.1016/j.soilbio.2009.08.001

Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493

Dutta BG, Ghosh GR (1965) Soil fungi from orissa (India) IV. Soil fungi of paddy fields. Mycopathol Mycol Appl 25(3-4):316–322. https://doi.org/10.1007/BF02049919

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200. https://doi.org/10.1093/bioinformatics/btr381

Elíades L, Cabello M, Voget C (2006) Contribution to the study of alkalophilic and alkali-tolerant Ascomycota from Argentina. Darwin 44:64–73

Grum-Grzhimaylo AA, Georgieva ML, Bondarenko SA, Debets AJM, Bilanenko EN (2016) On the diversity of fungi from soda soils. Fungal Divers 76(1):27–74. https://doi.org/10.1007/s13225-015-0320-2

Hanson CA (2016) microbial biogeography. In: International encyclopedia of geography: people, the earth, environment and technology. John Wiley & Sons, Ltd

Hao W-y, Yao H-q, Xu Y-r (1981) Investigation on ecological distribution of fungi in paddy soils. In: Proceedings of Symposium on Paddy Soils Springer Berlin Heidelberg, Berlin, Heidelberg, pp 323–329

Hu H-W, Zhang L-M, Yuan C-L, Zheng Y, Wang J-T, Chen D, He J-Z (2015a) The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors. Front Microbiol 6:938

Hu HW, Chen D, He JZ (2015b) Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol Rev 39(5):729–749. https://doi.org/10.1093/femsre/fuv021

Hussain Q, Liu Y, Zhang A, Pan G, Li L, Zhang X, Song X, Cui L, Jin Z (2011) Variation of bacterial and fungal community structures in the rhizosphere of hybrid and standard rice cultivars and linkage to CO2 flux. FEMS Microbiol Ecol 78:116–128

Jiang Y, Liang Y, Li C, Wang F, Sui Y, Suvannang N, Zhou J, Sun B (2016) Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol Biochem 95:250–261. https://doi.org/10.1016/j.soilbio.2016.01.007

Juniper S, Abbott L (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4(2):45–57. https://doi.org/10.1007/BF00204058

Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14

Kettler TA, Doran JW, Gilbert TL (2001) Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci Soc Am J 65(3):849–852. https://doi.org/10.2136/sssaj2001.653849x

Klaubauf S, Inselsbacher E, Zechmeister-Boltenstern S, Wanek W, Gottsberger R, Strauss J, Gorfer M (2010) Molecular diversity of fungal communities in agricultural soils from Lower Austria. Fungal Divers 44:65–75

Lüke C, Frenzel P, Ho A, Fiantis D, Schad P, Schneider B, Schwark L, Utami SR (2014) Macroecology of methane-oxidizing bacteria: the β-diversity of pmoA genotypes in tropical and subtropical rice paddies. Environ Microbiol 16(1):72–83. https://doi.org/10.1111/1462-2920.12190

Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40(9):2407–2415. https://doi.org/10.1016/j.soilbio.2008.05.021

Lee S-H, Kim C-G, Kang H (2011) Temporal dynamics of bacterial and fungal communities in a genetically modified (GM) rice ecosystem. Microb Ecol 61(3):646–659. https://doi.org/10.1007/s00248-010-9776-5

Leff B, Ramankutty N, Foley JA (2004) Geographic distribution of major crops across the world. Glob Biogeochem Cycles 18. doi: https://doi.org/10.1029/2003gb002108 , 1

Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers—a user’s guide. New Phytol 199(1):288–299. https://doi.org/10.1111/nph.12243

Liu C, Ding N, Fu Q, Brookes PC, Xu J, Guo B, Lin Y, Li H, Li N (2016a) The influence of soil properties on the size and structure of bacterial and fungal communities along a paddy soil chronosequence. Eur J Soil Biol 76:9–18. https://doi.org/10.1016/j.ejsobi.2016.06.002

Liu Y, Wang P, Pan G, Crowley D, Li L, Zheng J, Zhang X, Zheng J (2016b) Functional and structural responses of bacterial and fungal communities from paddy fields following long-term rice cultivation. J Soils Sediments 16(5):1460–1471. https://doi.org/10.1007/s11368-015-1343-8

Liu Y, Zhou T, Crowley D, Li L, Liu D, Zheng J, Yu X, Pan G, Hussain Q, Zhang X, Zheng J (2012) Decline in topsoil microbial quotient, fungal abundance and C utilization efficiency of rice paddies under heavy metal pollution across South China. PLoS One 7(6):e38858. https://doi.org/10.1371/journal.pone.0038858

Lopes AR, Faria C, Prieto-Fernandez A, Trasar-Cepeda C, Manaia CM, Nunes OC (2011) Comparative study of the microbial diversity of bulk paddy soil of two rice fields subjected to organic and conventional farming. Soil Biol Biochem 43(1):115–125. https://doi.org/10.1016/j.soilbio.2010.09.021

Ma X, Liu M, Li Z (2016) Shifts in microbial biomass and community composition in subtropical paddy soils under a gradient of manure amendment. Biol Fertil Soils 52:775–787

May LA, Smiley B, Schmidt MG (2001) Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Can J Microbiol 47:829–841

Moll J, Hoppe B, König S, Wubet T, Buscot F, Krüger D (2016) Spatial distribution of fungal communities in an arable soil. PLoS One 11(2):e0148130. https://doi.org/10.1371/journal.pone.0148130

Nagai K, Sakai T, Rantiatmodjo RM, Suzuki K, Gams W, Okada G (1995) Studies on the distribution of alkalophilic and alkali-tolerant soil fungi I. Mycoscience 36(3):247–256. https://doi.org/10.1007/BF02268598

Nagai K, Suzuki K, Okada G (1998) Studies on the distribution of alkalophilic and alkali-tolerant soil fungi II: fungal flora in two limestone caves in Japan. Mycoscience 39:293

Newsham KK, Hopkins DW, Carvalhais LC, Fretwell PT, Rushton SP, Odonnell AG, Dennis PG (2016) Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat Clim Chang 6(2):182–186. https://doi.org/10.1038/nclimate2806

Nishizawa T, Zhaorigetu KM, Sato Y, Kaneko N, Ohta H (2010) Molecular characterization of fungal communities in non-tilled, cover-cropped upland rice field soils. Microbes Environ 25(3):204–210. https://doi.org/10.1264/jsme2.ME10108

O'Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71(9):5544–5550. https://doi.org/10.1128/AEM.71.9.5544-5550.2005

Pan F, Li Y, Chapman SJ, Yao H (2016) Effect of rice straw application on microbial community and activity in paddy soil under different water status. Environ Sci Pollut Res 23(6):5941–5948. https://doi.org/10.1007/s11356-015-5832-5

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig WG, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196. https://doi.org/10.1093/nar/gkm864

Ross DS, Bailey SW, Lawrence GB, Shanley JB, Fredriksen G, Jamison AE, Brousseau PA (2011) Near-surface soil carbon, carbon/nitrogen ratio, and tree species are tightly linked across northeastern United States watersheds. For Sci 57:460–469

Schloss PD (2008) Evaluating different approaches that test whether microbial communities have the same structure. ISME J 2:265–275 311

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. https://doi.org/10.1128/AEM.01541-09

Shi L-L, Mortimer PE, Ferry Slik JW, Zou X-M, Xu J, Feng W-T, Qiao L (2014) Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Divers 64(1):305–315. https://doi.org/10.1007/s13225-013-0270-5

Smit E, Leeflang P, Glandorf B, van Elsas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65(6):2614–2621

Solaiman MZ, Hirata H (1995) Effects of indigenous arbuscular mycorrhizal fungi in paddy fields on rice growth and N, P, K nutrition under different water regimes. Soil Sci Plant Nutr 41(3):505–514. https://doi.org/10.1080/00380768.1995.10419612

Somenahally AC, Hollister EB, Loeppert RH, Yan W, Gentry TJ (2011) Microbial communities in rice rhizosphere altered by intermittent and continuous flooding in fields with long-term arsenic application. Soil Biol Biochem 43(6):1220–1228. https://doi.org/10.1016/j.soilbio.2011.02.011

Stewart CN, Excoffier L (1996) Assessing population genetic structure and variability with RAPD data: application to Vaccinium macrocarpon (American Cranberry). J Evol Biol 9(2):153–171. https://doi.org/10.1046/j.1420-9101.1996.9020153.x

Taylor DL, Sinsabaugh RL (2015) The soil fungi: occurrence, phylogeny, and ecology. In: Paul E (ed) Soil microbiology, ecology, and biochemistry. 4th Edition. Academic Press, pp 77-100

Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson K-H, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, L-d G, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346(6212):1256688. https://doi.org/10.1126/science.1256688

Walker GM, White NA (2011) Introduction to fungal physiology. In: Kavanagh K (ed) Fungi: biology and applications, 2nd edn. John Wiley & Sons, Ltd, Chichester, pp 1–35. https://doi.org/10.1002/9781119976950.ch1

Watanarojanaporn N, Boonkerd N, Tittabutr P, Longtonglang A, Young JPW, Teaumroong N (2013) Effect of Rice cultivation systems on indigenous arbuscular mycorrhizal fungal community structure. Microbes Environ 28(3):316–324. https://doi.org/10.1264/jsme2.ME13011

White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

Witt C, Haefele SM (2005) Paddy soils. In: Daniel H (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, pp 141–150. https://doi.org/10.1016/B0-12-348530-4/00286-1

Xu LH, Ravnskov S, Larsen J, Nilsson RH, Nicolaisen M (2012) Soil fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biol Biochem 46:26–32. https://doi.org/10.1016/j.soilbio.2011.11.010

Yuan H, Ge T, Zhou P, Liu S, Roberts P, Zhu H, Zou Z, Tong C, Wu J (2013) Soil microbial biomass and bacterial and fungal community structures responses to long-term fertilization in paddy soils. J Soils Sediments 13(5):877–886. https://doi.org/10.1007/s11368-013-0664-8