The biogeochemistry and bioremediation of uranium and other priority radionuclides

Chemical Geology - Tập 363 - Trang 164-184 - 2014
Laura Newsome1, Katherine Morris1, Jonathan R. Lloyd1
1Research Centre for Radwaste and Decommissioning and Williamson Research Centre for Molecular Environmental Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdelouas, 1998, Reduction of U(VI) to U(IV) by indigenous bacteria in contaminated ground water, J. Contam. Hydrol., 35, 217, 10.1016/S0169-7722(98)00134-X

Achal, 2012, Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp, Chemosphere, 89, 764, 10.1016/j.chemosphere.2012.06.064

Ahmed, 2012, Fe(III) Reduction and U(VI) immobilization by Paenibacillus sp. strain 300A, isolated from Hanford 300A subsurface sediments, Appl. Environ. Microbiol., 78, 8001, 10.1128/AEM.01844-12

Ahmed, 2012, Immobilization of U(VI) from oxic groundwater by Hanford 300 Area sediments and effects of Columbia River water, Water Res., 46, 3989, 10.1016/j.watres.2012.05.027

Akob, 2007, Metabolically active microbial communities in uranium-contaminated subsurface sediments, FEMS Microbiol. Ecol., 59, 95, 10.1111/j.1574-6941.2006.00203.x

Akob, 2012, Gene expression correlates with process rates quantified for sulfate- and Fe(III)-reducing bacteria in U(VI)-contaminated sediments, Front. Terr. Microbiol., 3, 280

Alessi, 2012, Quantitative separation of monomeric U(IV) from UO2 in products of U(VI) reduction, Environ. Sci. Technol., 46, 6150, 10.1021/es204123z

Amachi, 2003, Microbial participation in iodine volatilization from soils, Environ. Sci. Technol., 37, 3885, 10.1021/es0210751

Anderson, 1994, Microbial formation of crystalline strontium carbonate, FEMS Microbiol. Lett., 116, 43, 10.1111/j.1574-6968.1994.tb06673.x

Anderson, 2003, Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer, Appl. Environ. Microbiol., 69, 5884, 10.1128/AEM.69.10.5884-5891.2003

Andersson, 2001, The importance of colloids for the behavior of uranium isotopes in the low-salinity zone of a stable estuary, Geochim. Cosmochim. Acta, 65, 13, 10.1016/S0016-7037(00)00514-7

Appukuttan, 2007, Engineering of Deinococcus radiodurans R1 for bioprecipitation of uranium from dilute nuclear waste, Appl. Environ. Microbiol., 73, 1393, 10.1128/AEM.02902-06

Baldwin, 2008, Multilevel samplers as microcosms to assess microbial response to biostimulation, Ground Water, 46, 295, 10.1111/j.1745-6584.2007.00411.x

Banaszak, 1999, Subsurface interactions of actinide species and microorganisms: implications for the bioremediation of actinide–organic mixtures, J. Radioanal. Nucl. Chem., 241, 385, 10.1007/BF02347481

Bargar, 2013, Uranium redox transition pathways in acetate-amended sediments, Proc. Natl. Acad. Sci., 110, 4506, 10.1073/pnas.1219198110

Barlett, 2012, Uranium reduction and microbial community development in response to stimulation with different electron donors, Biodegradation, 23, 535, 10.1007/s10532-011-9531-8

Barlett, 2012, Integrative analysis of Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation, Biogeosciences, 9, 1033, 10.5194/bg-9-1033-2012

Basnakova, 1998, The use of Escherichia coli bearing a phoN gene for the removal of uranium and nickel from aqueous flows, Appl. Microbiol. Biotechnol., 50, 266, 10.1007/s002530051288

Beazley, 2007, Uranium biomineralization as a result of bacterial phosphatase activity: insights from bacterial isolates from a contaminated subsurface, Environ. Sci. Technol., 41, 5701, 10.1021/es070567g

Beazley, 2009, Nonreductive biomineralization of uranium(VI) phosphate via microbial phosphatase activity in anaerobic conditions, Geomicrobiol. J., 26, 431, 10.1080/01490450903060780

Beazley, 2011, The effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soils, Geochim. Cosmochim. Acta, 75, 5648, 10.1016/j.gca.2011.07.006

Begg, 2008, Technetium reduction and reoxidation behaviour in Dounreay soils, Radiochim. Acta, 96, 631, 10.1524/ract.2008.1547

Begg, 2011, Bioreduction behavior of U(VI) sorbed to sediments, Geomicrobiol. J., 28, 160, 10.1080/01490451003761137

Behrends, 2012, Implementation of microbial processes in the performance assessment of spent nuclear fuel repositories, Appl. Geochem., 27, 453, 10.1016/j.apgeochem.2011.09.014

Beller, 2005, Anaerobic, nitrate-dependent oxidation of U(IV) oxide minerals by the chemolithoautotrophic bacterium Thiobacillus denitrificans, Appl. Environ. Microbiol., 71, 2170, 10.1128/AEM.71.4.2170-2174.2005

Benzerara, 2011, Significance, mechanisms and environmental implications of microbial biomineralization, C. R. Geosci., 343, 160, 10.1016/j.crte.2010.09.002

Bernier-Latmani, 2010, Non-uraninite products of microbial U(VI) reduction, Environ. Sci. Technol., 44, 9456, 10.1021/es101675a

Beveridge, 1980, Sites of metal deposition in the cell wall of Bacillus subtilis, J. Bacteriol., 141, 876, 10.1128/JB.141.2.876-887.1980

Bishop, 2011, Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99), Geochim. Cosmochim. Acta, 75, 5229, 10.1016/j.gca.2011.06.034

Bonthrone, 1996, Bioaccumulation of nickel by intercalation into polycrystalline hydrogen uranyl phosphate deposited via an enzymatic mechanism, Nat. Biotechnol., 14, 635, 10.1038/nbt0596-635

Boonchayaanant, 2009, Uranium reduction and resistance to reoxidation under iron-reducing and sulfate-reducing conditions, Water Res., 43, 4652, 10.1016/j.watres.2009.07.013

Bopp, 2010, Uranium 238U/235U isotope ratios as indicators of reduction: results from an in situ biostimulation experiment at Rifle, Colorado, U.S.A., Environ. Sci. Technol., 44, 5927, 10.1021/es100643v

Boukhalfa, 2007, Plutonium(IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1, Appl. Environ. Microbiol., 73, 5897, 10.1128/AEM.00747-07

Boyanov, 2011, Solution and microbial controls on the formation of reduced U(IV) species, Environ. Sci. Technol., 45, 8336, 10.1021/es2014049

Brooks, 2003, Inhihition of bacterial U(VI) reduction by calcium, Environ. Sci. Technol., 37, 1850, 10.1021/es0210042

Brookshaw, 2012, Microbial effects on mineral–radionuclide interactions and radionuclide solid-phase capture processes, Mineral. Mag., 76, 777, 10.1180/minmag.2012.076.3.25

Brutinel, 2012, Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella, Appl. Microbiol. Biotechnol., 93, 41, 10.1007/s00253-011-3653-0

Burgos, 2008, Characterization of uraninite nanoparticles produced by Shewanella oneidensis MR-1, Geochim. Cosmochim. Acta, 72, 4901, 10.1016/j.gca.2008.07.016

Burke, 2005, Effects of progressive anoxia on the solubility of technetium in sediments, Environ. Sci. Technol., 39, 4109, 10.1021/es048124p

Burke, 2006, Reoxidation behavior of technetium, iron, and sulfur in estuarine sediments, Environ. Sci. Technol., 40, 3529, 10.1021/es052184t

Callister, 2010, Analysis of biostimulated microbial communities from two field experiments reveals temporal and spatial differences in proteome profiles, Environ. Sci. Technol., 44, 8897, 10.1021/es101029f

Campbell, 2011, Composition, stability, and measurement of reduced uranium phases for groundwater bioremediation at Old Rifle, CO, Appl. Geochem., 26, S167, 10.1016/j.apgeochem.2011.03.094

Campbell, 2011, Oxidative dissolution of biogenic uraninite in groundwater at Old Rifle, CO, Environ. Sci. Technol., 45, 8748, 10.1021/es200482f

Campbell, 2012, Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer, Appl. Geochem., 27, 1499, 10.1016/j.apgeochem.2012.04.013

Cardenas, 2008, Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels, Appl. Environ. Microbiol., 74, 3718, 10.1128/AEM.02308-07

Cardenas, 2010, Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach, Appl. Environ. Microbiol., 76, 6778, 10.1128/AEM.01097-10

Carlson, 2012, Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria, Proc. Natl. Acad. Sci., 109, 1702, 10.1073/pnas.1112905109

Cason, 2012, Reduction of U(VI) by the deep subsurface bacterium, Thermus scotoductus SA-01, and the involvement of the ABC transporter protein, Chemosphere, 86, 572, 10.1016/j.chemosphere.2011.10.006

Catalano, 2004, Spectroscopic and diffraction study of uranium speciation in contaminated vadose zone sediments from the Hanford site, Washington state, Environ. Sci. Technol., 38, 2822, 10.1021/es049963e

Catalano, 2006, Changes in uranium speciation through a depth sequence of contaminated Hanford sediments, Environ. Sci. Technol., 40, 2517, 10.1021/es0520969

Cerrato, 2013, Relative reactivity of biogenic and chemogenic uraninite and biogenic noncrystalline U(IV), Environ. Sci. Technol., 47, 9756, 10.1021/es401663t

Chandler, 2010, Monitoring microbial community structure and dynamics during in situ U(VI) bioremediation with a field-portable microarray analysis system, Environ. Sci. Technol., 44, 5516, 10.1021/es1006498

Chang, 2005, Microbial incorporation of 13C-labeled acetate at the field scale: detection of microbes responsible for reduction of U(VI), Environ. Sci. Technol., 39, 9039, 10.1021/es051218u

Childers, 2002, Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis, Nature, 416, 767, 10.1038/416767a

Cho, 2012, Linking bacterial diversity and geochemistry of uranium-contaminated groundwater, Environ. Technol., 33, 1629, 10.1080/09593330.2011.641036

Choi, 2005, Bioleaching of uranium from low grade black schists by Acidithiobacillus ferrooxidans, World J. Microbiol. Biotechnol., 21, 377, 10.1007/s11274-004-3627-9

Choppin, 2007, Actinide speciation in the environment, J. Radioanal. Nucl. Chem., 273, 695, 10.1007/s10967-007-0933-3

Choppin, 2002, Chapter 22. Behavior of radionuclides in the environment, 653

Choudhary, 2011, Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste, J. Hazard. Mater., 186, 336, 10.1016/j.jhazmat.2010.11.004

Cologgi, 2011, Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism, Proc. Natl. Acad. Sci. U. S. A., 108, 15248, 10.1073/pnas.1108616108

Councell, 1997, Microbial reduction of iodate, Water Air Soil Pollut., 100, 99, 10.1023/A:1018370423790

Cuthbert, 2012, Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. pasteurii biofilms and limits due to bacterial encapsulation, Ecol. Eng., 41, 32, 10.1016/j.ecoleng.2012.01.008

Dalla Vecchia, 2010, U(VI) reduction by spores of Clostridium acetobutylicum, Res. Microbiol., 161, 765, 10.1016/j.resmic.2010.08.001

Dar, 2013, Spatial distribution of Geobacteraceae and sulfate-reducing bacteria during in situ bioremediation of uranium-contaminated groundwater, Remediat. J., 23, 31, 10.1002/rem.21347

Davis, 2004, Approaches to surface complexation modeling of uranium(VI) adsorption on aquifer sediments, Geochim. Cosmochim. Acta, 68, 3621, 10.1016/j.gca.2004.03.003

De Luca, 2001, Reduction of technetium(VII) by Desulfovibrio fructosovorans is mediated by the nickel–iron hydrogenase, Appl. Environ. Microbiol., 67, 4583, 10.1128/AEM.67.10.4583-4587.2001

Deo, 2011, Bacterial Pu(V) reduction in the absence and presence of Fe(III)-NTA: modeling and experimental approach, Biodegradation, 22, 921, 10.1007/s10532-010-9451-z

DiChristina, 1992, Effects of nitrate and nitrite on dissimilatory iron reduction by Shewanella putrefaciens 200, J. Bacteriol., 174, 1891, 10.1128/jb.174.6.1891-1896.1992

Docrat, 1999, X-ray absorption spectroscopy of tricarbonatodioxouranate(V), [UO2(CO3)3]5−, in aqueous solution, Inorg. Chem., 38, 1879, 10.1021/ic9814423

Eagling, 2012, Mobilization of technetium from reduced sediments under seawater inundation and intrusion scenarios, Environ. Sci. Technol., 46, 11798, 10.1021/es3025935

Ehrlich, 1990

Ewing, 2010, Environmental impact of the nuclear fuel cycle: fate of actinides, MRS Bull., 35, 859, 10.1557/mrs2010.712

Fang, 2009, Multicomponent reactive transport modeling of uranium bioremediation field experiments, Geochim. Cosmochim. Acta, 73, 6029, 10.1016/j.gca.2009.07.019

Fang, 2012, Evaluation of a genome-scale in silico metabolic model for Geobacter metallireducens by using proteomic data from a field biostimulation experiment, Appl. Environ. Microbiol., 78, 8735, 10.1128/AEM.01795-12

Ferris, 1995, Microbial precipitation of a strontium calcite phase at a groundwater discharge zone near Rock Creek, British Columbia, Canada, Geomicrobiol. J., 13, 57, 10.1080/01490459509378004

Ferris, 2004, Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20°C in artificial groundwater, Geochim. Cosmochim. Acta, 68, 1701, 10.1016/S0016-7037(03)00503-9

Finneran, 2002, Potential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction, Soil Sediment Contam., 11, 339, 10.1080/20025891106781

Finneran, 2002, Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments, Environ. Microbiol., 4, 510, 10.1046/j.1462-2920.2002.00317.x

Fisher, 1983, Interactions of marine plankton with transuranic elements. II. Influence of dissolved organic compounds on americium and plutonium accumulation in a diatom, Mar. Chem., 13, 45, 10.1016/0304-4203(83)90048-8

Fletcher, 2010, U(VI) reduction to mononuclear U(IV) by Desulfitobacterium species, Environ. Sci. Technol., 44, 4705, 10.1021/es903636c

Fox, 2010, Redox transformations and transport of cesium and iodine (−1, 0, +5) in oxidizing and reducing zones of a sand and gravel aquifer, Environ. Sci. Technol., 44, 1940, 10.1021/es902865s

Fox, 2013, Abiotic U(VI) reduction by sorbed Fe(II) on natural sediments, Geochim. Cosmochim. Acta, 117, 266, 10.1016/j.gca.2013.05.003

Francis, 1994, XPS and XANES studies of uranium reduction by Clostridium sp, Environ. Sci. Technol., 28, 636, 10.1021/es00053a016

Francis, 2008, Reductive dissolution of Pu(IV) by Clostridium sp. under anaerobic conditions, Environ. Sci. Technol., 42, 2355, 10.1021/es072016w

Fredrickson, 2000, Reduction of U(VI) in goethite (α-FeOOH) suspensions by a dissimilatory metal-reducing bacterium, Geochim. Cosmochim. Acta, 64, 3085, 10.1016/S0016-7037(00)00397-5

Fredrickson, 2002, Influence of Mn oxides on the reduction of uranium(VI) by the metal-reducing bacterium Shewanella putrefaciens, Geochim. Cosmochim. Acta, 66, 3247, 10.1016/S0016-7037(02)00928-6

Fredrickson, 2004, Reduction of TcO4− by sediment-associated biogenic Fe(II), Geochim. Cosmochim. Acta, 68, 3171, 10.1016/j.gca.2003.10.024

Fredrickson, 2009, Oxidative dissolution potential of biogenic and abiogenic TcO2 in subsurface sediments, Geochim. Cosmochim. Acta, 73, 2299, 10.1016/j.gca.2009.01.027

Fujita, 2004, Strontium incorporation into calcite generated by bacterial ureolysis, Geochim. Cosmochim. Acta, 68, 3261, 10.1016/j.gca.2003.12.018

Fujita, 2010, Evaluating the potential of native ureolytic microbes to remediate a 90Sr contaminated environment, Environ. Sci. Technol., 44, 7652, 10.1021/es101752p

Gadd, 2009, Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment, J. Chem. Technol. Biotechnol., 84, 13, 10.1002/jctb.1999

Gallard, 2009, Formation of iodinated organic compounds by oxidation of iodide-containing waters with manganese dioxide, Environ. Sci. Technol., 43, 7003, 10.1021/es9010338

Gavrilov, 2012, Fe(III) oxide reduction by a Gram-positive thermophile: physiological mechanisms for dissimilatory reduction of poorly crystalline Fe(III) oxide by a thermophilic Gram-positive bacterium Carboxydothermus ferrireducens, Geomicrobiol. J., 29, 804, 10.1080/01490451.2011.635755

Geissler, 2011, Microbial communities associated with the oxidation of iron and technetium in bioreduced sediments, Geomicrobiol. J., 28, 507, 10.1080/01490451.2010.515287

Gihring, 2011, A limited microbial consortium is responsible for extended bioreduction of uranium in a contaminated aquifer, Appl. Environ. Microbiol., 77, 5955, 10.1128/AEM.00220-11

Ginder-Vogel, 2006, Thermodynamic constraints on the oxidation of biogenic UO2 by Fe(III) (hydr)oxides, Environ. Sci. Technol., 40, 3544, 10.1021/es052305p

Gorby, 1992, Enzymatic uranium precipitation, Environ. Sci. Technol., 26, 205, 10.1021/es00025a026

Green, 2012, Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site, Appl. Environ. Microbiol., 78, 1039, 10.1128/AEM.06435-11

Gu, 2011, Dissolution of technetium(IV) oxide by natural and synthetic organic ligands under both reducing and oxidizing conditions, Environ. Sci. Technol., 45, 4771, 10.1021/es200110y

Handley, 2012, High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment, FEMS Microbiol. Ecol., 81, 188, 10.1111/j.1574-6941.2012.01363.x

Handley-Sidhu, 2010, A review of the environmental corrosion, fate and bioavailability of munitions grade depleted uranium, Sci. Total Environ., 408, 5690, 10.1016/j.scitotenv.2010.08.028

Handley-Sidhu, 2011, Uptake of Sr2+ and Co2+ into biogenic hydroxyapatite: implications for biomineral ion exchange synthesis, Environ. Sci. Technol., 45, 6985, 10.1021/es2015132

Handley-Sidhu, 2011, Nano-crystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions, Biotechnol. Lett., 33, 79, 10.1007/s10529-010-0391-9

Hirota, 2010, Bacterial phosphate metabolism and its application to phosphorus recovery and industrial bioprocesses, J. Biosci. Bioeng., 109, 423, 10.1016/j.jbiosc.2009.10.018

Holmes, 2013, Molecular analysis of the in situ growth rates of subsurface Geobacter species, Appl. Environ. Microbiol., 79, 1646, 10.1128/AEM.03263-12

Holmes, 2013, Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwater, ISME J., 7, 1286, 10.1038/ismej.2013.20

Hsi, 1985, Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding model, Geochim. Cosmochim. Acta, 49, 1931, 10.1016/0016-7037(85)90088-2

Hu, 2005, Sorption and transport of iodine species in sediments from the Savannah River and Hanford Sites, J. Contam. Hydrol., 78, 185, 10.1016/j.jconhyd.2005.05.007

Hu, 2007

Hyun, 2012, Uranium(VI) reduction by iron(II) monosulfide mackinawite, Environ. Sci. Technol., 46, 3369, 10.1021/es203786p

Icenhower, 2010, The biogeochemistry of technetium: a review of the behavior of an artificial element in the natural environment, Am. J. Sci., 310, 721, 10.2475/08.2010.02

Icopini, 2007, Biological reduction of Np(V) and Np(V) citrate by metal-reducing bacteria, Environ. Sci. Technol., 41, 2764, 10.1021/es0618550

Icopini, 2009, Plutonium(V/VI) reduction by the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1, Appl. Environ. Microbiol., 75, 3641, 10.1128/AEM.00022-09

Ilton, 2012, Reduction of U(VI) incorporated in the structure of hematite, Environ. Sci. Technol., 46, 9428, 10.1021/es3015502

Istok, 2004, In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer, Environ. Sci. Technol., 38, 468, 10.1021/es034639p

Istok, 2010, A thermodynamically-based model for predicting microbial growth and community composition coupled to system geochemistry: application to uranium bioreduction, J. Contam. Hydrol., 112, 1, 10.1016/j.jconhyd.2009.07.004

Jaisi, 2009, Reduction and long-term immobilization of technetium by Fe(II) associated with clay mineral nontronite, Chem. Geol., 264, 127, 10.1016/j.chemgeo.2009.02.018

Jeon, 2004, Microbial reduction of U(VI) at the solid–water interface, Environ. Sci. Technol., 38, 5649, 10.1021/es0496120

Jeong, 1997, Localization of enzymically enhanced heavy metal accumulation by Citrobacter sp. and metal accumulation in vitro by liposomes containing entrapped enzyme, Microbiology, 143, 2497, 10.1099/00221287-143-7-2497

Jiang, 2011, Bacterial formation of extracellular U(VI) nanowires, Chem. Commun., 47, 8076, 10.1039/c1cc12554k

Junier, 2009, Metal reduction by spores of Desulfotomaculum reducens, Environ. Microbiol., 11, 3007, 10.1111/j.1462-2920.2009.02003.x

Kaplan, 2011, Evaluation of a radioiodine plume increasing in concentration at the Savannah River site, Environ. Sci. Technol., 45, 489, 10.1021/es103314n

Kaszuba, 1999, The aqueous geochemistry of neptunium: dynamic control of soluble concentrations with applications to nuclear waste disposal, Environ. Sci. Technol., 33, 4427, 10.1021/es990470x

Katsenovich, 2012, Enhanced U(VI) release from autunite mineral by aerobic Arthrobacter sp. in the presence of aqueous bicarbonate, Chem. Geol., 308–309, 1, 10.1016/j.chemgeo.2012.03.010

Kazy, 2009, Uranium and thorium sequestration by a Pseudomonas sp.: mechanism and chemical characterization, J. Hazard. Mater., 163, 65, 10.1016/j.jhazmat.2008.06.076

Kelly, 2008, Speciation of uranium in sediments before and after in situ biostimulation, Environ. Sci. Technol., 42, 1558, 10.1021/es071764i

Kelly, 2009, Uranium transformations in static microcosms, Environ. Sci. Technol., 44, 236, 10.1021/es902191s

Kennedy, 2011, Retention of iodide by bacteriogenic iron oxides, Geomicrobiol. J., 28, 387, 10.1080/01490451003653110

Kerkhof, 2011, Phase preference by active, acetate-utilizing bacteria at the Rifle, CO Integrated Field Research Challenge site, Environ. Sci. Technol., 45, 1250, 10.1021/es102893r

Khijniak, 2003, Reduction of pertechnetate by haloalkaliphilic strains of Halomonas, FEMS Microbiol. Ecol., 44, 109, 10.1016/S0168-6496(03)00018-7

Khijniak, 2005, Reduction of uranium(VI) phosphate during growth of the thermophilic bacterium Thermoterrabacterium ferrireducens, Appl. Environ. Microbiol., 71, 6423, 10.1128/AEM.71.10.6423-6426.2005

Kimber, 2012, Biogeochemical behaviour of plutonium during anoxic biostimulation of contaminated sediments, Mineral. Mag., 76, 567, 10.1180/minmag.2012.076.3.08

Knopp, 2003, Laser spectroscopic studies of interactions of U(VI) with bacterial phosphate species, Chem. Eur. J., 9, 2812, 10.1002/chem.200304711

Ko, 1970, Production of phospholipases by soil micro-organisms, Soil Sci., 110, 355, 10.1097/00010694-197011000-00010

Koch-Steindl, 2001, Considerations on the behaviour of long-lived radionuclides in the soil, Radiat. Environ. Biophys., 40, 93, 10.1007/s004110100098

Komlos, 2008, Long-term dynamics of uranium reduction/reoxidation under low sulfate conditions, Geochim. Cosmochim. Acta, 72, 3603, 10.1016/j.gca.2008.05.040

Krejci, 2011, Selective sequestration of strontium in desmid green algae by biogenic co-precipitation with barite, ChemSusChem, 4, 470, 10.1002/cssc.201000448

Langmuir, 1978, Uranium solution–mineral equilibria at low temperatures with applications to sedimentary ore deposits, Geochim. Cosmochim. Acta, 42, 547, 10.1016/0016-7037(78)90001-7

Langmuir, 1997

Latta, 2012, Abiotic reduction of uranium by Fe(II) in soil, Appl. Geochem., 27, 1512, 10.1016/j.apgeochem.2012.03.003

Law, 2010, Role of nitrate in conditioning aquifer sediments for technetium bioreduction, Environ. Sci. Technol., 44, 150, 10.1021/es9010866

Law, 2010, Geomicrobiological redox cycling of the transuranic element neptunium, Environ. Sci. Technol., 44, 8924, 10.1021/es101911v

Law, 2011, Uranium redox cycling in sediment and biomineral systems, Geomicrobiol. J., 28, 497, 10.1080/01490451.2010.512033

Leang, 2010, Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens, Appl. Environ. Microbiol., 76, 4080, 10.1128/AEM.00023-10

Lear, 2010, Probing the biogeochemical behavior of technetium using a novel nuclear imaging approach, Environ. Sci. Technol., 44, 156, 10.1021/es802885r

Lee, 2010, Biogenic formation and growth of uraninite (UO2), Environ. Sci. Technol., 44, 8409, 10.1021/es101905m

Li, 2009, Mineral transformation and biomass accumulation associated with uranium bioremediation at Rifle, Colorado, Environ. Sci. Technol., 43, 5429, 10.1021/es900016v

Li, 2010, Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle, Colorado, J. Contam. Hydrol., 112, 45, 10.1016/j.jconhyd.2009.10.006

Li, 2011, Physicochemical heterogeneity controls on uranium bioreduction rates at the field scale, Environ. Sci. Technol., 45, 9959, 10.1021/es201111y

Liang, 2012, Microbial functional gene diversity with a shift of subsurface redox conditions during in situ uranium reduction, Appl. Environ. Microbiol., 78, 2966, 10.1128/AEM.06528-11

Lim, 2007, Distribution and diversity of phytate-mineralizing bacteria, ISME J., 1, 321, 10.1038/ismej.2007.40

Lin, 2012, Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site, Environ. Microbiol., 14, 414, 10.1111/j.1462-2920.2011.02659.x

Liu, 2006, Kinetics of microbial reduction of solid phase U(VI), Environ. Sci. Technol., 40, 6290, 10.1021/es0608601

Liu, 2008, Pertechnetate immobilization with amorphous iron sulfide, Radiochim. Acta, 96, 823, 10.1524/ract.2008.1528

Liu, 2009, Microbial reduction of intragrain U(VI) in contaminated sediment, Environ. Sci. Technol., 43, 4928, 10.1021/es8029208

Lloyd, 2011, The geomicrobiology of radionuclides, Geomicrobiol. J., 28, 383, 10.1080/01490451.2010.547551

Lloyd, 1996, A novel PhosphorImager-based technique for monitoring the microbial reduction of technetium, Appl. Environ. Microbiol., 62, 578, 10.1128/AEM.62.2.578-582.1996

Lloyd, 2000, Bioremediation of radionuclide-containing wastewaters, 277

Lloyd, 2005, Microbial transformations of radionuclides: fundamental mechanisms and biogeochemical implications, volume 44, 205

Lloyd, 1997, Reduction and removal of heptavalent technetium from solution by Escherichia coli, J. Bacteriol., 179, 2014, 10.1128/jb.179.6.2014-2021.1997

Lloyd, 1999, Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flowthrough bioreactor, Appl. Environ. Microbiol., 65, 2691, 10.1128/AEM.65.6.2691-2696.1999

Lloyd, 1999, Microbial reduction of technetium by Escherichia coli and Desulfovibrio desulfuricans: enhancement via the use of high-activity strains and effect of process parameters, Biotechnol. Bioeng., 66, 122, 10.1002/(SICI)1097-0290(1999)66:2<122::AID-BIT5>3.0.CO;2-Y

Lloyd, 2000, Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria, Appl. Environ. Microbiol., 66, 3743, 10.1128/AEM.66.9.3743-3749.2000

Lloyd, 2000, Biological reduction and removal of Np(V) by two microorganisms, Environ. Sci. Technol., 34, 1297, 10.1021/es990394y

Lloyd, 2002, Reduction of actinides and fission products by Fe(III)-reducing bacteria, Geomicrobiol. J., 19, 103, 10.1080/014904502317246200

Lloyd, 2003, Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens, Biochem. J., 369, 153, 10.1042/bj20020597

Lovley, 2011, Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination, Energy Environ. Sci., 4, 4896, 10.1039/c1ee02229f

Lovley, 2011, A shift in the current: new applications and concepts for microbe–electrode electron exchange, Curr. Opin. Biotechnol., 22, 441, 10.1016/j.copbio.2011.01.009

Lovley, 1988, Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese, Appl. Environ. Microbiol., 54, 1472, 10.1128/AEM.54.6.1472-1480.1988

Lovley, 1992, Reduction of uranium by Desulfovibrio desulfuricans, Appl. Environ. Microbiol., 58, 850, 10.1128/AEM.58.3.850-856.1992

Lovley, 1992, Bioremediation of uranium contamination with enzymatic uranium reduction, Environ. Sci. Technol., 26, 2228, 10.1021/es00035a023

Lovley, 1989, Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens, Appl. Environ. Microbiol., 55, 700, 10.1128/AEM.55.3.700-706.1989

Lovley, 1991, Microbial reduction of uranium, Nature, 350, 413, 10.1038/350413a0

Lovley, 1993, Geobacter metallireducens gen-nov. sp.-nov., a microorganism capable of coupling the complete oxidation of organic-compounds to the reduction of iron and other metals, Arch. Microbiol., 159, 336, 10.1007/BF00290916

Lovley, 1993, Reduction of uranium by cytochrome-c3 of Desulfovibrio vulgaris, Appl. Environ. Microbiol., 59, 3572, 10.1128/AEM.59.11.3572-3576.1993

Lovley, 2004, Dissimilatory Fe(III) and Mn(IV) reduction, 219, 10.1016/S0065-2911(04)49005-5

Luksiene, 2012, Effect of microorganisms on the plutonium oxidation states, Appl. Radiat. Isot., 70, 442, 10.1016/j.apradiso.2011.11.016

Luo, 2011, Dissolution of uranium-bearing minerals and mobilization of uranium by organic ligands in a biologically reduced sediment, Environ. Sci. Technol., 45, 2994, 10.1021/es103073u

Luo, 2007, Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition, Appl. Microbiol. Biotechnol., 77, 713, 10.1007/s00253-007-1183-6

Lyalikova, 1996, Reduction of heptavalent technetium by acidophilic bacteria of the genus Thiobacillus, Microbiology, 65, 468

Mabbett, 2002, Effect of complexing agents on reduction of Cr(VI) by Desulfovibrio vulgaris ATCC 29579, Biotechnol. Bioeng., 79, 389, 10.1002/bit.10361

Macaskie, 1990, An immobilized cell bioprocess for the removal of heavy metals from aqueous flows, J. Chem. Technol. Biotechnol., 49, 357, 10.1002/jctb.280490408

Macaskie, 1991, The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: biodegradation and bioaccumulation as a means of treating radionuclide-containing streams, Crit. Rev. Biotechnol., 11, 41, 10.3109/07388559109069183

Macaskie, 1992, Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2PO4, Science, 257, 782, 10.1126/science.1496397

Macaskie, 1994, Phosphatase-mediated heavy metal accumulation by a Citrobacter sp. and related enterobacteria, FEMS Microbiol. Lett., 121, 141, 10.1111/j.1574-6968.1994.tb07090.x

Macaskie, 1994, Enzymically accelerated biomineralization of heavy metals: application to the removal of americium and plutonium from aqueous flows, FEMS Microbiol. Rev., 14, 351, 10.1111/j.1574-6976.1994.tb00109.x

Macaskie, 2000, Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation, Microbiology, 146, 1855, 10.1099/00221287-146-8-1855

Madden, 2007, Microbial uranium immobilization independent of nitrate reduction, Environ. Microbiol., 9, 2321, 10.1111/j.1462-2920.2007.01347.x

Madden, 2009, Donor-dependent extent of uranium reduction for bioremediation of contaminated sediment microcosms, J. Environ. Qual., 38, 53, 10.2134/jeq2008.0071

Madden, 2012, Long-term solid-phase fate of co-precipitated U(VI)–Fe(III) following biological iron reduction by Thermoanaerobacter, Am. Mineral., 97, 1641, 10.2138/am.2012.4122

Maher, 2012, Environmental speciation of actinides, Inorg. Chem., 52, 3510, 10.1021/ic301686d

Marshall, 2006, c-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis, PLoS Biol., 4, 1324, 10.1371/journal.pbio.0040268

Marshall, 2008, Hydrogenase- and outer membrane c-type cytochrome-facilitated reduction of technetium(VII) by Shewanella oneidensis MR-1, Environ. Microbiol., 10, 125, 10.1111/j.1462-2920.2007.01438.x

Marshall, 2009, Electron donor-dependent radionuclide reduction and nanoparticle formation by Anaeromyxobacter dehalogenans strain 2CP-C, Environ. Microbiol., 11, 534, 10.1111/j.1462-2920.2008.01795.x

Marsili, 2008, Shewanella secretes flavins that mediate extracellular electron transfer, Proc. Natl. Acad. Sci., 105, 3968, 10.1073/pnas.0710525105

Martinez, 2007, Aerobic uranium(VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide- and metal-contaminated subsurface soils, Environ. Microbiol., 9, 3122, 10.1111/j.1462-2920.2007.01422.x

McBeth, 2007, Technetium reduction and reoxidation in aquifer sediments, Geomicrobiol. J., 24, 189, 10.1080/01490450701457030

McBeth, 2011, Redox interactions of technetium with iron-bearing minerals, Mineral. Mag., 75, 2419, 10.1180/minmag.2011.075.4.2419

Mehta, 2005, Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens, Appl. Environ. Microbiol., 71, 8634, 10.1128/AEM.71.12.8634-8641.2005

Merroun, 2008, Bacterial interactions with uranium: an environmental perspective, J. Contam. Hydrol., 102, 285, 10.1016/j.jconhyd.2008.09.019

Michel, 1986, Cadmium accumulation by immobilized cells of a Citrobacter sp. using various phosphate donors, Biotechnol. Bioeng., 28, 1358, 10.1002/bit.260280910

Mondani, 2011, Influence of uranium on bacterial communities: a comparison of natural uranium-rich soils with controls, PLoS One, 6, 1, 10.1371/journal.pone.0025771

Moon, 2007, Uranium reoxidation in previously bioreduced sediment by dissolved oxygen and nitrate, Environ. Sci. Technol., 41, 4587, 10.1021/es063063b

Moon, 2009, Biogenic U(IV) oxidation by dissolved oxygen and nitrate in sediment after prolonged U(VI)/Fe(III)/SO42− reduction, J. Contam. Hydrol., 105, 18, 10.1016/j.jconhyd.2008.10.014

Morris, 2001, Plutonium solubility in sediment pore waters, J. Environ. Radioact., 56, 259, 10.1016/S0265-931X(00)00208-3

Morris, 2008, An X-ray absorption study of the fate of technetium in reduced and reoxidised sediments and mineral phases, Appl. Geochem., 23, 603, 10.1016/j.apgeochem.2007.10.014

Myers, 1988, Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor, Science, 240, 1319, 10.1126/science.240.4857.1319

N'Guessan, 2008, Sustained removal of uranium from contaminated groundwater following stimulation of dissimilatory metal reduction, Environ. Sci. Technol., 42, 2999, 10.1021/es071960p

N'Guessan, 2010, Postbiostimulation microbial community structure changes that control the reoxidation of uranium, FEMS Microbiol. Ecol., 74, 184, 10.1111/j.1574-6941.2010.00933.x

Nielsen, 2010, Electric currents couple spatially separated biogeochemical processes in marine sediment, Nature, 463, 1071, 10.1038/nature08790

Nyman, 2007, Inhibition of a U(VI)- and sulfate-reducing consortia by U(VI), Environ. Sci. Technol., 41, 6528, 10.1021/es062985b

O'Loughlin, 2010, XAFS investigation of the interactions of U(VI) with secondary mineralization products from the bioreduction of Fe(III) oxides, Environ. Sci. Technol., 44, 1656, 10.1021/es9027953

Orellana, 2013, U(VI) reduction by diverse outer surface c-type cytochromes of Geobacter sulfurreducens, Appl. Environ. Microbiol., 79, 6369, 10.1128/AEM.02551-13

Orozco, 2011, Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of an uranium-contaminated aquifer, J. Geophys. Res., 116, 1

Pabalan, 1998, Uranium(VI) sorption onto selected mineral surfaces: key geochemical parameters, 99

Parrish, 2008, Depleted uranium contamination by inhalation exposure and its detection after approximately 20years: implications for human health assessment, Sci. Total Environ., 390, 58, 10.1016/j.scitotenv.2007.09.044

Paterson-Beedle, 2010, Biorecovery of uranium from aqueous solutions at the expense of phytic acid, Hydrometallurgy, 104, 524, 10.1016/j.hydromet.2010.01.019

Paterson-Beedle, 2012, Radiotolerance of phosphatases of a Serratia sp.: potential for the use of this organism in the biomineralization of wastes containing radionuclides, Biotechnol. Bioeng., 109, 1937, 10.1002/bit.24467

Pattanapipitpaisal, 2002, Reduction of Cr(VI) and bioaccumulation of chromium by Gram-positive and Gram-negative microorganisms not previously exposed to Cr-stress, Environ. Technol., 23, 731, 10.1080/09593332308618367

Peacock, 2011, Field-scale uranium (VI) bioimmobilization monitored by lipid biomarkers and 13C-acetate incorporation, Remediat. J., 21, 85, 10.1002/rem.20301

Peretyazhko, 2008, Reduction of Tc(VII) by Fe(II) sorbed on Al (hydr)oxides, Environ. Sci. Technol., 42, 5499, 10.1021/es8003156

Peretyazhko, 2012, Pertechnetate (TcO4−) reduction by reactive ferrous iron forms in naturally anoxic, redox transition zone sediments from the Hanford Site, USA, Geochim. Cosmochim. Acta, 92, 48, 10.1016/j.gca.2012.05.041

Peterson, 2008

Pfeffer, 2012, Filamentous bacteria transport electrons over centimetre distances, Nature, 491, 218, 10.1038/nature11586

Plymale, 2011, Competitive reduction of pertechnetate ((TcO4−)-Tc-99) by dissimilatory metal reducing bacteria and biogenic Fe(II), Environ. Sci. Technol., 45, 951, 10.1021/es1027647

Powers, 2002, Introduction of a plasmid-encoded phoA gene for constitutive overproduction of alkaline phosphatase in three subsurface Pseudomonas isolates, FEMS Microbiol. Ecol., 41, 115, 10.1111/j.1574-6941.2002.tb00972.x

Qiu, 2011, Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium, Bioresour. Technol., 102, 4697, 10.1016/j.biortech.2011.01.038

Reed, 2007, Subsurface bio-mediated reduction of higher-valent uranium and plutonium, J. Alloys Compd., 444–445, 376, 10.1016/j.jallcom.2007.06.015

Regenspurg, 2009, Removal of uranium(VI) from the aqueous phase by iron(II) minerals in presence of bicarbonate, Appl. Geochem., 24, 1617, 10.1016/j.apgeochem.2009.04.029

Reguera, 2005, Extracellular electron transfer via microbial nanowires, Nature, 435, 1098, 10.1038/nature03661

Renshaw, 2005, Bioreduction of uranium: environmental implications of a pentavalent intermediate, Environ. Sci. Technol., 39, 5657, 10.1021/es048232b

Renshaw, 2009, Impact of the Fe(III)-reducing bacteria Geobacter sulfurreducens and Shewanella oneidensis on the speciation of plutonium, Biogeochemistry, 94, 191, 10.1007/s10533-009-9318-8

Richter, 2012, Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration, Appl. Environ. Microbiol., 78, 913, 10.1128/AEM.06803-11

Rittmann, 2002, Reduction of Np(V) and precipitation of Np(IV) by an anaerobic microbial consortium, Biodegradation, 13, 329, 10.1023/A:1022382627690

Roig, 1995, Biological rehabilitation of metal bearing wastewaters

Rui, 2013, Bioreduction of hydrogen uranyl phosphate: mechanisms and U(IV) products, Environ. Sci. Technol., 47, 5668, 10.1021/es305258p

Rusin, 1994, Solubilization of plutonium hydrous oxide by iron-reducing bacteria, Environ. Sci. Technol., 28, 1686, 10.1021/es00058a021

Salome, 2013, The role of anaerobic respiration in the immobilization of uranium through biomineralization of phosphate minerals, Geochim. Cosmochim. Acta, 106, 344, 10.1016/j.gca.2012.12.037

Sanford, 2007, Hexavalent uranium supports growth of Anaeromyxobacter dehalogenans and Geobacter spp. with lower than predicted biomass yields, Environ. Microbiol., 9, 2885, 10.1111/j.1462-2920.2007.01405.x

Sani, 2002, Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas isolates, Appl. Microbiol. Biotechnol., 60, 192, 10.1007/s00253-002-1069-6

Sani, 2005, Reoxidation of reduced uranium with iron(III) (hydr)oxides under sulfate-reducing conditions, Environ. Sci. Technol., 39, 2059, 10.1021/es0494297

Schiewer, 2000, Biosorption processes for heavy metal removal, 329

Schofield, 2008, Structure of biogenic uraninite produced by Shewanella oneidensis strain MR-1, Environ. Sci. Technol., 42, 7898, 10.1021/es800579g

Senko, 2002, In situ evidence for uranium immobilization and remobilization, Environ. Sci. Technol., 36, 1491, 10.1021/es011240x

Senko, 2005, Role for Fe(III) minerals in nitrate-dependent microbial U(IV) oxidation, Environ. Sci. Technol., 39, 2529, 10.1021/es048906i

Senko, 2007, The effect of U(VI) bioreduction kinetics on subsequent reoxidation of biogenic U(IV), Geochim. Cosmochim. Acta, 71, 4644, 10.1016/j.gca.2007.07.021

Sharp, 2011, Uranium speciation and stability after reductive immobilization in aquifer sediments, Geochim. Cosmochim. Acta, 75, 6497, 10.1016/j.gca.2011.08.022

Shelobolina, 2004, Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid-resistant bacterium from low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranea sp. nov, Appl. Environ. Microbiol., 70, 2959, 10.1128/AEM.70.5.2959-2965.2004

Shelobolina, 2007, Importance of c-type cytochromes for U(VI) reduction by Geobacter sulfurreducens, BMC Microbiol., 7, 15, 10.1186/1471-2180-7-16

Shelobolina, 2009, U(VI) sequestration in hydroxyapatite produced by microbial glycerol 3-phosphate metabolism, Appl. Environ. Microbiol., 75, 5773, 10.1128/AEM.00628-09

Shetaya, 2012, Iodine dynamics in soils, Geochim. Cosmochim. Acta, 77, 457, 10.1016/j.gca.2011.10.034

Shiel, 2013, No measurable changes in 238U/235U due to desorption–adsorption of U(VI) from groundwater at the Rifle, Colorado, Integrated Field Research Challenge site, Environ. Sci. Technol., 47, 2535, 10.1021/es303913y

Siegal, 2003

Singer, 2012, U(VI) sorption and reduction kinetics on the magnetite (111) surface, Environ. Sci. Technol., 46, 3821, 10.1021/es203878c

Siuda, 2001, Utilisation of selected dissolved organic phosphorus compounds by bacteria in lake water under non-limiting orthophosphate conditions, Pol. J. Environ. Stud., 10, 475

Sivaswamy, 2011, Multiple mechanisms of uranium immobilization by Cellulomonas sp. strain ES6, Biotechnol. Bioeng., 108, 264, 10.1002/bit.22956

Slobodkin, 2006, Reclassification of Thermoterrabacterium ferrireducens as Carboxydothermus ferrireducens comb. nov., and emended description of the genus Carboxydothermus, Int. J. Syst. Evol. Microbiol., 56, 2349, 10.1099/ijs.0.64503-0

Smeaton, 2008, Bacterially enhanced dissolution of meta-autunite, Am. Mineral., 93, 1858, 10.2138/am.2008.2836

Spain, 2011, Nitrate-reducing bacteria at the nitrate and radionuclide contaminated Oak Ridge Integrated Field Research Challenge site: a review, Geomicrobiol. J., 28, 418, 10.1080/01490451.2010.507642

Spycher, 2011, Biogenic uraninite precipitation and its reoxidation by iron(III) (hydr)oxides: a reaction modeling approach, Geochim. Cosmochim. Acta, 75, 4426, 10.1016/j.gca.2011.05.008

Stewart, 2011, Influence of uranyl speciation and iron oxides on uranium biogeochemical redox reactions, Geomicrobiol. J., 28, 444, 10.1080/01490451.2010.507646

Suzuki, 1999, Geomicrobiology of uranium, Rev. Mineral. Geochem., 38, 393

Suzuki, 2004, Resistance to, and accumulation of, uranium by bacteria from a uranium-contaminated site, Geomicrobiol. J., 21, 113, 10.1080/01490450490266361

Suzuki, 2002, Radionuclide contamination: nanometre-size products of uranium bioreduction, Nature, 419, 134, 10.1038/419134a

Suzuki, 2003, Microbial populations stimulated for hexavalent uranium reduction in uranium mine sediment, Appl. Environ. Microbiol., 69, 1337, 10.1128/AEM.69.3.1337-1346.2003

Suzuki, 2010, Flavin mononucleotide mediated electron pathway for microbial U(VI) reduction, Phys. Chem. Chem. Phys., 12, 10081, 10.1039/c0cp00339e

Tang, 2013, U(VI) bioreduction with emulsified vegetable oil as the electron donor — model application to a field test, Environ. Sci. Technol., 47, 3218, 10.1021/es304643h

Tang, 2013, U(VI) bioreduction with emulsified vegetable oil as the electron donor — microcosm tests and model development, Environ. Sci. Technol., 47, 3209, 10.1021/es304641b

Tebo, 1998, Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors, FEMS Microbiol. Lett., 162, 193, 10.1111/j.1574-6968.1998.tb12998.x

Thomas, 1996, Biodegradation of tributyl phosphate by naturally occurring microbial isolates and coupling to the removal of uranium from aqueous solution, Environ. Sci. Technol., 30, 2371, 10.1021/es950861l

Thorpe, 2012, The synergistic effects of high nitrate concentrations on sediment bioreduction, Geomicrobiol. J., 29, 484, 10.1080/01490451.2011.581332

Thorpe, 2012, Strontium sorption and precipitation behaviour during bioreduction in nitrate impacted sediments, Chem. Geol., 306–307, 114, 10.1016/j.chemgeo.2012.03.001

Tobler, 2011, Comparison of rates of ureolysis between Sporosarcina pasteurii and an indigenous groundwater community under conditions required to precipitate large volumes of calcite, Geochim. Cosmochim. Acta, 75, 3290, 10.1016/j.gca.2011.03.023

Tokunaga, 2008, Influences of organic carbon supply rate on uranium bioreduction in initially oxidizing, contaminated sediment, Environ. Sci. Technol., 42, 8901, 10.1021/es8019947

Ulrich, 2008, Dissolution of biogenic and synthetic UO2 under varied reducing conditions, Environ. Sci. Technol., 42, 5600, 10.1021/es800647u

UNEP, 2003

Van Groenestijn, 1988, Role of cations in accumulation and release of phosphate by Acinetobacter strain 210A, Appl. Environ. Microbiol., 54, 2894, 10.1128/AEM.54.12.2894-2901.1988

Vandehey, 2012, Monitoring Tc dynamics in a bioreduced sediment: an investigation with gamma camera imaging of 99mTc-pertechnetate and 99mTc-DTPA, Environ. Sci. Technol., 46, 12583, 10.1021/es302313h

VanEngelen, 2010, UO22+ speciation determines uranium toxidity and bioaccumulation in an environmental Pseudomonas sp. isolate, Environ. Toxicol. Chem., 29, 763, 10.1002/etc.126

Veeramani, 2011, Products of abiotic U(VI) reduction by biogenic magnetite and vivianite, Geochim. Cosmochim. Acta, 75, 2512, 10.1016/j.gca.2011.02.024

Veeramani, 2013, Abiotic reductive immobilization of U(VI) by biogenic mackinawite, Environ. Sci. Technol., 47, 2361, 10.1021/es304025x

Venkateswaran, 1999, Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov, Int. J. Syst. Bacteriol., 49, 705, 10.1099/00207713-49-2-705

Vermeul, 2009

Von Canstein, 2008, Secretion of flavins by Shewanella species and their role in extracellular electron transfer, Appl. Environ. Microbiol., 74, 615, 10.1128/AEM.01387-07

Waldron, 2009, Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels, Environ. Sci. Technol., 43, 3529, 10.1021/es803423p

Wall, 2006, Uranium reduction, 149

Wan, 2005, Reoxidation of bioreduced uranium under reducing conditions, Environ. Sci. Technol., 39, 6162, 10.1021/es048236g

Wan, 2008, Effects of organic carbon supply rates on uranium mobility in a previously bioreduced contaminated sediment, Environ. Sci. Technol., 42, 7573, 10.1021/es800951h

Wang, 2013, Uraninite oxidation and dissolution induced by manganese oxide: a redox reaction between two insoluble minerals, Geochim. Cosmochim. Acta, 100, 24, 10.1016/j.gca.2012.09.053

Wellman, 2006, Comparative analysis of soluble phosphate amendments for the remediation of heavy metal contaminants: effect on sediment hydraulic conductivity, Environ. Chem., 3, 219, 10.1071/EN05023

Wellman, 2007

Wellman, 2007

Wellman, 2008

Wharton, 2000, An X-ray absorption spectroscopy study of the coprecipitation of Tc and Re with mackinawite (FeS), Appl. Geochem., 15, 347, 10.1016/S0883-2927(99)00045-1

Wildung, 2000, Effect of electron donor and solution chemistry on products of dissimilatory reduction of technetium by Shewanella putrefaciens, Appl. Environ. Microbiol., 66, 2451, 10.1128/AEM.66.6.2451-2460.2000

Wildung, 2004, Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential, FEMS Microbiol. Ecol., 49, 151, 10.1016/j.femsec.2003.08.016

Wilkins, 2007, The influence of microbial redox cycling on radionuclide mobility in the subsurface at a low-level radioactive waste storage site, Geobiology, 5, 293, 10.1111/j.1472-4669.2007.00101.x

Wilkins, 2009, Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation, Appl. Environ. Microbiol., 75, 6591, 10.1128/AEM.01064-09

Williams, 2009, Geophysical monitoring of coupled microbial and geochemical processes during stimulated subsurface bioremediation, Environ. Sci. Technol., 43, 6717, 10.1021/es900855j

Williams, 2010, Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer, J. Geophys. Res., 115, 10.1029/2009JG001142

Williams, 2010, Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation, Environ. Sci. Technol., 44, 47, 10.1021/es9017464

Williams, 2011, Acetate availability and its influence on sustainable bioremediation of uranium-contaminated groundwater, Geomicrobiol. J., 28, 519, 10.1080/01490451.2010.520074

Williams, 2012, Bioremediation of uranium-contaminated groundwater: a systems approach to subsurface biogeochemistry, Curr. Opin. Biotechnol., 24, 489, 10.1016/j.copbio.2012.10.008

Williamson, 2013, Microbial reduction of Fe(III) under alkaline conditions relevant to geological disposal, Appl. Environ. Microbiol., 79, 3320, 10.1128/AEM.03063-12

Wu, 2006, Uranium(VI) reduction by Anaeromyxobacter dehalogenans strain 2CP-C, Appl. Environ. Microbiol., 72, 3608, 10.1128/AEM.72.5.3608-3614.2006

Wu, 2006, Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 1. Conditioning of a treatment zone, Environ. Sci. Technol., 40, 3978, 10.1021/es051954y

Wu, 2006, Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of U(VI) and geochemical control of U(VI) bioavailability, Environ. Sci. Technol., 40, 3986, 10.1021/es051960u

Wu, 2007, In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen, Environ. Sci. Technol., 41, 5716, 10.1021/es062657b

Wu, 2010, Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface, Environ. Sci. Technol., 44, 5104, 10.1021/es1000837

Yabusaki, 2007, Uranium removal from groundwater via in situ biostimulation: field-scale modeling of transport and biological processes, J. Contam. Hydrol., 93, 216, 10.1016/j.jconhyd.2007.02.005

Yabusaki, 2011, Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment, J. Contam. Hydrol., 126, 271, 10.1016/j.jconhyd.2011.09.002

Yang, 2012, Effects of redox cycling of iron in nontronite on reduction of technetium, Chem. Geol., 291, 206, 10.1016/j.chemgeo.2011.10.013

Yong, 1995, Enhancement of uranium bioaccumulation by a Citrobacter sp. via enzymically-mediated growth of polycrystalline NH4UO2PO4, J. Chem. Technol. Biotechnol., 63, 101, 10.1002/jctb.280630202

Zachara, 2007, Reduction of pertechnetate Tc(VII) by aqueous Fe(II) and the nature of solid phase redox products, Geochim. Cosmochim. Acta, 71, 2137, 10.1016/j.gca.2006.10.025

Zachara, 2013, Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater–river interaction zone, J. Contam. Hydrol., 147, 45, 10.1016/j.jconhyd.2013.02.001

Zhuang, 2012, The design of long-term effective uranium bioremediation strategy using a community metabolic model, Biotechnol. Bioeng., 109, 2475, 10.1002/bit.24528