Những khởi đầu của vật lý chất đặc lý thuyết tại Rome: một ký ức cá nhân

Springer Science and Business Media LLC - Tập 39 - Trang 3-36 - 2014
Carlo Di Castro1, Luisa Bonolis2
1Physics Department, Università di Roma “Sapienza”, Rome, Italy
2Max Planck Institute for the History of Science, Berlin, Germany

Tóm tắt

Cuộc phỏng vấn lịch sử miệng này cung cấp một cái nhìn cá nhân về cách mà vật lý chất đặc lý thuyết phát triển tại Rome bắt đầu từ những năm sáu mươi của thế kỷ trước. Sau đó, cuộc phỏng vấn theo dõi những hướng nghiên cứu mà người được phỏng vấn theo đuổi cho đến thời điểm phỏng vấn, vào tháng Ba năm 2006. Các chủ đề được xem xét trải dài từ hiện tượng học của heli siêu lỏng và siêu dẫn, hiện tượng tới hạn và phương pháp nhóm chuẩn hóa, chất lỏng lượng tử cho đến các hệ thống electron tương quan mạnh và siêu dẫn ở nhiệt độ cao. Trong những chủ đề này, các vấn đề cơ bản của vật lý chất đặc được đề cập, chẳng hạn như suy diễn vi mô của sự mở rộng, chuyển tiếp kim loại-cách điện và các hiệu ứng tương tác trên các hệ thống electron không trật tự vượt ngoài sự định vị Anderson, và sự tồn tại của các trạng thái không đồng nhất trong các hợp chất cuprate.

Từ khóa


Tài liệu tham khảo

Abrahams, E., E.P. Anderson, D.C. Licciardello and T.V. Ramakrishnan. 1979. Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42: 673 Abrikosov, A.A., L.P. Gorkov and L. Ye. Dzyaloshinskii. 1965. Quantum Field Theoretical Problems In Statistical Mechanics. Pergamon Press Altshuler, B.L. and A.G. Aronov. 1979. Contribution to the theory of disordered metals in strongly doped semiconductors. JETP 50: 968 Altshuler, B.L., A.G. Aronov and P.A. Lee. 1980. Interaction effects in disordered Fermi systems in two dimensions. Phys. Rev. Lett. 44: 1288 Altshuler, B.L., A.G. Aronov. 1983. Fermi-liquid of the electron-electron interaction effects in disordered metals. Solid State Commun. 46: 429 Andergassen, S., S. Caprara, C. Di Castro and M. Grilli. 2001. Anomalous isotopic effect near the charge-ordering quantum criticality. Phys. Rev. Lett. 87: 056401 Anderson, P.W. 1958. Absence of diffusion in certain random lattices. Phys. Rev. 109: 1492 Anderson, P.W. 1987. The Resonating Valence Bond State in La2CuO4 and Superconductivity. Science 235: 1196 Anderson, P.W. 1990a. Luttinger-liquid behavior of the normal metallic state of 2D Hubbard model. Phys. Rev. Lett. 64: 1839 Anderson, P.W. 1990b. Singular forward scattering in the 2D Hubbard model and a renormalised Bethe Ansatz ground state. Phys. Rev. Lett. 65: 2306 Bardeen, J., L.R. Cooper and R. Schrieffer. 1957. Theory of superconductivity, Phys. Rev. 108: 1175 Bednorz, J.G. and K.A. Müller. 1986. Possible high-Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64: 189 Berenson, B. 1948. I pittori italiani del Rinascimento. Hoepli, Milano Bogolyubov, N. 1947. On the theory of superfluidity, J. Phys. (Moscow) 11: 23 Bogolyubov, N. and P.V. Shirkov. 1959. Introduction to the Theory of Quantized Fields. Interscience Publishers, New York Bonch-Bruevich, V.L. and S.V. Tyablikov. 1962. The Green Function Method in Statistical Mechanics. North-Holland, Amsterdam Brezin, E., J.C. Le Guillou and J. Zinn-Justin. 1973. Wilson’s theory of critical phenomena and Callan-Symanzik equations in 4-ϵ dimensions. Phys. Rev. D 8: 434 Cancrini, N., S. Caprara, C. Castellani, C. Di Castro, M. Grilli and R. Raimondi. 1991. Phase separation and superconductivity in Kondo-like spin-hole coupled model. Europhys. Lett. 14: 597 Castellani, C. and C. Di Castro. 1979a. Arbitrariness and symmetry properties of the functional formulation of the Hubbard hamiltonian. Phys. Lett. A 70: 37 Castellani, C., C. Di Castro, D. Feinberg and J. Ranninger. 1979b. A new model Hamiltonian for the metal-insulator transition. Phys. Rev. Lett. 43: 1957 Castellani, C., C. Di Castro and J. Ranninger. 1982. Decimation approach in quantum systems. Nucl. Phys. B 200: 45 Castellani, C., C. Di Castro, G. Forgacs and E. Tabet. 1983. Towards a microscopic theory of the metal-insulator transition. Nucl. Phys. B 225: 441 Castellani, C., C. Di Castro, P.A. Lee and M. Ma. 1984a. Interaction driven metal-insulation transitions in disordered fermions. Phys. Rev. B 30: 527 Castellani, C., C. Di Castro, P.A. Lee, M. Ma, S. Sorella and E. Tabet. 1984b. Spin fluctuations in disordered interacting electrons. Phys. Rev. B 30: 1596 Castellani, C., C. Di Castro, G. Forgacs and S. Sorella. 1984c. Spin-orbit coupling in disordered interacting electron gas. Solid State Commun. 52: 261 Castellani, C. and C. Di Castro. 1985. Metal-insulator transition and Landau Fermi liquid theory. In Localization and metalinsulator transitions. A Festschrift in honour of N.H. Mott, edited by H. Fritzsche and D. Adler. Plenum Publishing Corporation, New York, p. 215 Castellani, C., C. Di Castro, P.A. Lee, M. Ma, S. Sorella and E. Tabet. 1986a. Enhancement of the spin susceptibility in disordered interacting electrons and the metal-insulator transition. Phys. Rev. B 33: 6169 Castellani, C. and C. Di Castro. 1986b. Effective Landau theory for disordered interacting electron systems: specific heat behavior. Phys. Rev. B 34: 5935 Castellani, C., C. Di Castro and P.A. Lee. 1988a. Metallic phase and metal-insulator transition in two-dimensional electronic systems. Phys. Rev. B 57: R9381 Castellani, C., C. Di Castro and M. Grilli. 1988b.Possible occurrence of band interplay in high Tc superconductors. Proceeding of International Conference on High-Temperature Superconductors and Materials and Mechanisms of Superconductivity Part II, Interlaken, March 1988. Physica C 153-155: 1659 Castellani, C., C. Di Castro and W. Metzner. 1994. Dimensional crossover from Fermi to Luttinger liquid. Phys. Rev. Lett. 72: 316 Castellani, C., C. Di Castro and M. Grilli. 1995. Singular quasiparticle scattering in the proximity of charge instabilities. Phys. Rev. Lett. 75: 4650 Castellani, C., C. Di Castro and M. Grilli. 1997a. Non-Fermi Liquid behaviour and d-wave superconductivity near the charge density wave quantum critical point. Zeit. Phys. B 103: 137 Castellani, C., C. Di Castro, F. Pistolesi and G. Strinati. 1997b. Infrared behavior for interacting bosons at zero temperature. Phys. Rev. Lett. 79: 1612 Castellani, C., C. Di Castro and M. Grilli. 1998. Stripe formation: A quantum critical point for cuprate superconductors. J. Phys. Chem. Solids 59: 1694 Chang, J., E. Blackburn, A.T. Holmes, N.B. Christensen, J. Larsen, J. Mesot, R. Liang, D.A. Bonn, W.N. Hardy, A. Watenphul, M.V. Zimmermann, E.M. Forgan and S.M. Hayden. 2012. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nat. Phys. 8: 871 Chrétien, M.E., P. Gross and S. Deser (eds.). 1968. Statistical Physics, Phase Transitions and Superfluidity (Brandeis University Summer Institute in Theoretical Physics, 1966). Gordon and Breach, New York Courant, R. and H. Robbins. 1950. Che cos’è la matematica? [original title: What is Mathematics?]. Einaudi, Torino De Pasquale, F., C. Di Castro and G. Jona-Lasinio. 1971. Field theory approach to phase transitions. In Critical Phenomena (Course LI, Varenna), edited by M.S. Green, Academic Press, New York, p. 123 Di Castro, C. and J.G. Valatin. 1964. Change of the energy gap with a magnetic field in superconducting films, Phys. Lett. 8: 230 Di Castro, C. 1965. Lezioni di Fisica dei Superfluidi. Scuola di Perfezionamento in Fisica dell’Università di Roma Di Castro, C. 1996. A phenomenological Model for Creation of Vortices by Ions in Liquid Helium II. Il Nuovo Cimento B 42: 251 Di Castro, C. and W. Young. 1969a. Density matrix methods and time dependence of order parameter in superconductors. Il Nuovo Cimento B 62: 273 Di Castro, C. and G. Jona-Lasinio. 1969b. On the Microscopic Foundation of Scaling Laws. Phys. Lett. A 29: 322 Di Castro, C., C.F. Ferro-Luzzi and J.A. Tyson. 1969c. Dynamical scaling laws and time dependent Landau-Ginzburg equation, Phys. Lett. A 29: 458 Di Castro, C. 1972. The multiplicative renormalization group and the critical behavior in d = 4ϵ dimensions. Lettere al Nuovo Cimento 5: 69 Di Castro, C. 1974a. Unified derivation of scaling from renormalization group and thermodynamic functionals. In Renormalization Group in Critical Phenomena and Quantum Field Theory, edited by J.D. Gunton and M.S. Green, Conference held at Chestnut Hill, Pennsylvania, 29–31 May 1973, Temple University, Philadelphia, pp. 148-156 Di Castro, C., G. Jona-Lasinio and L. Peliti. 1974b. Variational principles, renormalization group and Kadanoff’s universality. Ann. Phys. 87: 327 Di Castro, C. and G. Jona-Lasinio. 1976. The renormalization group approach to critical phenomena. In Phase transitions and critical phenomena, edited by C. Domb and M.S. Green, Vol. 6. Academic Press, London, pp. 507–558 Di Castro, C. 1981. A new model Hamiltonian for a correlated electron system within the general framework of critical phenomena and phase transitions. In Perspectives in statistical mechanics, edited by H.J. Raveché. North Holland, Amsterdam, p. 139 Di Castro, C. 1988. Renormalized Fermi liquid theory for disordered electron systems and the metal-insulator transition. In Anderson Localization. International Symposium, Tokyo 16–18 August 1987, edited by T. Ando and H. Fukuyama. Springer Verlag, Berlin, p. 96 Di Castro, C. and W. Metzner. 1991. Ward Identities and the beta-function in the Luttinger liquid. Phys. Rev. Lett. 67: 3852 Di Castro, C., R. Raimondi and S. Caprara. 2004. Renormalization group and Ward Identities in quantum liquid phases and in unconventional critical phenomena. J. Stat. Phys. 115: 91 Dirac, P.A.M. 1959. I principi della meccanica quantistica [original title: The Principles of Quantum Mechanics]. Boringhieri, Torino Domb, C. and M. Green (eds.). 1976. Phase Transitions and Critical Phenomena. Academic Press, London Dzyaloshinskii, I.E. and A.I. Larkin. 1974. Correlation functions for a one-dimensional Fermi system with long-range interaction (Tomonaga model). Sov. Phys. J. Exp. Theor. Phys. 38: 202 Emery, V.J., S.A. Kivelson and H.Q. Lin. 1990. Phase separation in the t-J model. Phys. Rev. Lett. 64: 475 Finkel’stein, A.M. 1983. Influence of Coulomb interaction on the properties of disordered metals. Sov. Phys. J. Exp. Theor. Phys. 57: 97 Finkel’stein, A.M. 1984a. Weak localization and coulomb interaction in disordered systems. Z. Phys. B 56: 189 Finkel’stein, A.M. 1984b. Metal-insulator transition in a disordered system. Sov. Phys. J. Exp. Theor. Phys. 59: 212 Gavoret, J. and P. Nozières. 1964. Structure of the perturbation expansion for the Bose liquid at zero temperature. Ann. Phys. 28: 349 Gell-Man, M. and F.E. Low. 1954. Quantum Electrodynamics at Small Distances. Phys. Rev. 95: 1300 Georges, A., G. Kotliar, W. Krauth and M. Rozenberg. 1996. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68: 13 Ghiringhelli, G., M. Le Tacon, M. Minola, S. Blanco-Canosa, C. Mazzoli, N.B. Brookes, G.M. De Luca, A. Frano, D.G. Hawthorn, F. He, T. Loew, M. Moretti Sala, D.C. Peets, M. Salluzzo, E. Schierle, R. Sutarto, G.A. Sawatzky, E. Weschke, B. Keimer and L. Braicovich. 2012. Long-Range Incommensurate Charge Fluctuations in (Y,Nd)Ba2Cu3O6+x. Science 337: 821 Girardeau, M. and R. Arnowitt. 1959. Theory of many-boson system: pair theory. Phys. Rev. 113: 755 Gorkov, L.P., A.I. Larkin and D.E. Khmelnitskii. 1979. Particle conductivity in a two-dimensional random potential. J. Exp. Theor. Phys. Lett. 30: 228 Green, M.S. (ed.). 1971. Critical Phenomena (Course LI, Varenna). Academic Press, New York Grest, G.S. and P.A. Lee. 1983. Scaling theory of disordered fermions. Phys. Rev. Lett. 50: 693 Grilli, M., R. Raimondi, C. Castellani, C. Di Castro and G. Kotliar. 1991. Phase separation and superconductivity in the U = infinite limit of the extended multiband Hubbard model. Int. J. Mod. Phys. B 5: 309 Gunton, J.D. and M.S. Green (eds.). 1974. Renormalization Group in Critical Phenomena and Quantum Field Theory, Conference held at Chestnut Hill, Pennsylvania, 29–31 May 1973. Temple University, Philadelphia Huang, K. and A.C. Olinto. 1965. Phys. Rev. A 139: 1441 Jeans, J. 1933. The mysterious universe. Cambridge University Press, Cambridge Kadanoff, L.P. 1966. Scaling laws for Ising models near T c. Physics 2: 263 Kadanoff, L.P., W. Gotze, D. Hamblen, R. Hecht, E.A.S. Lewis, V.V. Palciauskas, M. Rayl, J. Swift, D. Aspnes and J.W. Kane. 1967. Static phenomena near critical points: theory and experiment. Rev. Mod. Phys. 39: 395 Kravchenko, S.V., W.E. Mason, G.E. Bowker, J.E. Furneaux, V.M. Pudalov, M. D’Iorio. 1995. Scaling of an anomalous metal-insulator transition in a two-dimensional system in silicon at B = 0. Phys. Rev. B 51: 7038 Kravchenko, S.V., D. Simonian, M.P. Sarachik, W. Mason and J.E. Furneaux. 1996. Electric Field Scaling at a B = 0 Metal-Insulator Transition in Two Dimensions. Phys. Rev. Lett. 77: 4938 Kravchenko, S.V. and M. Sarachik. 2004. Metal-insulator transition in two-dimensional electron systems. Rep. Prog. Phys. 67: 1 Landau, L.D. 1937a. Theory of phase transformations. I. Zh. Exsp. Teor. Fiz. 7: 19; Phys. Z. Sowjetunion 11: 26 Landau, L.D. 1937b. Theory of phase transformations. II. Zh. Exsp. Teor. Fiz. 7: 627; Phys. Z. Sowjetunion 11: 545 Landau, L.D. 1941. The theory of superfluid helium II. J. Phys. USSR 5: 71 Landau, L.D. 1947. On the theory of superfluidity of helium II. J. Phys. USSR 11: 91 Landau, L.D. 1957. The Theory of Fermi Liquids. Zh. Exsp. Teor. Fiz. 30: 1058 (1956); Sov. Phys. J. Exp. Theor. Phys. 3: 920 Landau, L.D. 1958. On the theory of Fermi liquid. Zh. Exsp. Teor. Fiz. 35: 97; Sov. Phys. J. Exp. Theor. Phys. 8: 70 (1959) Longhi, R. 1946. Piero Della Francesca. Hoepli, Milano Löw, U., V.J. Emery, K. Fabricius, and S.A. Kivelson. 1994. Study of an Ising model with competing long- and short-range interactions. Phys. Rev. Lett. 72: 1918. Metzner, W. and C. Di Castro. 1993. Conservation laws and correlation functions in the Luttinger liquid. Phys. Rev. B 47: 16107 Metzner, W., C. Castellani and C. Di Castro. 1997. Fermi Systems with Strong Forward Scattering. Adv. Phys. 47: 317 Müller, K.A. and G. Benedeck (eds.). 1993. Phase separation in cuprate superconductors. Erice May 6–12, 1992. World Scientific, Singapore Müller, K.A. and E. Sigmund (eds.). Phase separation in cuprate superconductors. Cottbus, September 4–10, 1993. Springer Verlag Nambu, Y. and S.F. Tuan. 1964. Considerations on the Magnetic Field Problem in Superconducting Thin Films. Phys. Rev. A 133: 1 Ortix, C., J. Lorenzana and C. Di Castro. 2006. Frustrated phase separation in two-dimensional charged systems. Phys. Rev. B 73: 245117 Patashinkij, A.Z. and V.L. Pokrovskij. 1966. Behavior of Ordered Systems Near the Transition Point. Sov. Phys. J. Exp. Theor. Phys. 23: 292 Pines, D. 1961. The Many-Body Problem. W.A. Benjamin, New York Pistolesi, F., C. Castellani, C. Di Castro and G.C. Strinati. 2004. Renormalization group approach to the infrared behavior of a zero-temperature Bose system. Phys. Rev. B 69: 024513 Schrödinger, E. 1957. Statistical Thermodynamics. Cambridge University Press Tranquada, J., B.J. Sternlieb, J.D. Axe, Y. Nakzmura and S. Uchida. 1995. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375: 561 Wegner, F. 1976. Electrons in Disordered Systems. Scaling near the Mobility Edge. Z. Phys. B 25: 327 Wilson, K.G. 1971a. Renormalization Group and critical phenomena. I. Renormalization Group and the Kadanoff scaling picture. Phys. Rev. B 4: 3174 Wilson, K.G. 1971b. Renormalization Group and critical phenomena. II. Phase-space cell analysis of critical behavior. Phys. Rev. B 4: 3184 Wilson, K.G. and M.E. Fisher. 1972a. Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28: 240 Wilson, K.G. 1972b. Feynman-graph expansion for critical exponents. Phys. Rev. Lett. 28: 548 Wilson, K.G. and J. Kogut. 1974. The renormalization group and the ϵ-expansion. Phys. Rep. 12: 75 Wilson, K.G. 1983. The Renormalization Group and Critical Phenomena. Rev. Mod. Phys. 55: 583 Wu, T., H. Mayaffre, S. Krämer, M. Horvatic, C. Berthier, W.N. Hardy, R. Liang, D.A. Bonn and M.-H. Julien. 2001. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy. Nature 477: 191