The battle for biomass: A systematic review of food-feed-fuel competition

Global Food Security - Tập 25 - Trang 100330 - 2020
Abigail Muscat1, E.M. de Olde1, I.J.M. de Boer1, R. Ripoll-Bosch1
1Animal Production Systems Group, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akgul, 2012, Economic optimisation of a UK advanced biofuel supply chain, Biomass Bioenergy, 41, 57, 10.1016/j.biombioe.2012.01.040

Alexandratos, 2012, WORLD AGRICULTURE TOWARDS 2030/2050 the 2012 revision, Food Agric. Organ U. N., 146

Banse, 2014, Global impact of multinational biofuel mandates on land use, feedstock prices, international trade and land-use greenhouse gas emissions, Landbauforschung, 64, 59

Banse, 2011, Impact of EU biofuel policies on world agricultural production and land use, Biomass Bioenergy, 35, 2385, 10.1016/j.biombioe.2010.09.001

Bartoli, 2016, The impact of different energy policy options on feedstock price and land demand for maize silage: the case of biogas in Lombardy, Energy Policy, 96, 351, 10.1016/j.enpol.2016.06.018

Ben Fradj, 2016, Competition between food, feed, and (bio)fuel: a supply-side model based assessment at the European scale, Land Use Policy, 52, 195, 10.1016/j.landusepol.2015.12.027

Beringer, 2011, Bioenergy production potential of global biomass plantations under environmental and agricultural constraints, GCB Bioenergy, 3, 299, 10.1111/j.1757-1707.2010.01088.x

Boland, 2014

Bourguignon, 2013

Brinkman, 2017, Low-ILUC-risk ethanol from Hungarian maize, Biomass Bioenergy, 99, 57, 10.1016/j.biombioe.2017.02.006

Bryngelsson, 2013, Why large-scale bioenergy production on marginal land is unfeasible: a conceptual partial equilibrium analysis, Energy Policy, 55, 454, 10.1016/j.enpol.2012.12.036

Burgess, 2012, A framework for reviewing the trade-offs between, renewable energy, food, feed and wood production at a local level, Renew. Sustain. Energy Rev., 16, 129, 10.1016/j.rser.2011.07.142

Callesen, 2010, Optimization of bioenergy yield from cultivated land in Denmark, Biomass Bioenergy, 34, 1348, 10.1016/j.biombioe.2010.04.020

Dahiya, 2018, Food waste biorefinery: sustainable strategy for circular bioeconomy, Bioresour. Technol., 248, 2, 10.1016/j.biortech.2017.07.176

Dale, 2011, Interactions among bioenergy feedstock choices landscape dynamics and land use, Ecol. Appl., 21, 1039, 10.1890/09-0501.1

Damerau, 2016, Water saving potentials and possible trade-offs for future food and energy supply, Glob. Environ. Chang., 39, 15, 10.1016/j.gloenvcha.2016.03.014

Davis, 2015, Livestock intensification and the influence of dietary change: a calorie-based assessment of competition for crop production, Sci. Total Environ., 538, 817, 10.1016/j.scitotenv.2015.08.126

Davis, 2014, Moderating diets to feed the future, Earth’s Future, 2, 559, 10.1002/2014EF000254

de Boer, 2018

de Visser, 2014, The EU's dependency on soya bean import for the animal feed industry and potential for EU produced alternatives, OCL, 21, 8, 10.1051/ocl/2014021

Demartini, 2016, The effect of biogas production on farmland rental prices: empirical evidences from Northern Italy, Energies, 9, 1, 10.3390/en9110965

Elbersen, 2013, Assessing the effect of stricter sustainability criteria on EU biomass crop potential, Biofuels Bioprod. Biorefin., 7, 173, 10.1002/bbb.1396

Erb, 2016, Exploring the biophysical option space for feeding the world without deforestation, Nat. Commun., 7, 11382, 10.1038/ncomms11382

Erb, 2012, Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability, Energy Policy, 47, 260, 10.1016/j.enpol.2012.04.066

Ertl, 2015, The net contribution of dairy production to human food supply: the case of austrian dairy farms, Agric. Syst., 137, 119, 10.1016/j.agsy.2015.04.004

Ertl, 2016, Net food production of different Livestock: a national analysis for Austria including relative occupation of different land categories, Bodenkultur, 67, 91

2018

European Parliament and Council, 2009, Directive 2009/28/EC of the european parliament and of the Council of 23 april 2009, Off. J. Eur. Union, 140, 16

FAO

Fazeni, 2011, Impact of changes in diet on the availability of land, energy demand, and greenhouse gas emissions of agriculture, Energy Sustain. Soc., 1, 1, 10.1186/2192-0567-1-6

Fischer, 2007, Mind the sustainability gap, Trends Ecol. Evol., 22, 621, 10.1016/j.tree.2007.08.016

Forsell, 2013, Sub-national TIMES model for analyzing future regional use of biomass and biofuels in Sweden and France, Renew. Energy, 60, 415, 10.1016/j.renene.2013.05.015

Gardebroek, 2017, The impact of biofuel policies on crop acreages in Germany and France, J. Agric. Econ., 68, 839, 10.1111/1477-9552.12218

Garnett, 2016, Planting up solutions, Science, 80, 353

Garnett, 2009, Livestock-related greenhouse gas emissions: impacts and options for policy makers, Environ. Sci. Policy, 12, 491, 10.1016/j.envsci.2009.01.006

Garnett, 2017

Garnett, 2015

Giampietro

Gielen, 2002, Biomass strategies for climate policies?, Clim. Policy, 2, 319, 10.3763/cpol.2002.0237

Gillingham, 2008, Impact of bioenergy crops in a carbon dioxide constrained world: an application of the MiniCAM energy-agriculture and land use model, Mitig. Adapt. Strategies Glob. Change, 13, 675, 10.1007/s11027-007-9122-5

Gissi, 2016, Sustainable energy potential from biomass through ecosystem services trade-off analysis: the case of the Province of Rovigo (Northern Italy), Ecosyst. Serv., 18, 1, 10.1016/j.ecoser.2016.01.004

Godfray, 2010, Food security: the challenge of feeding 9 billion people, Science, 327, 812, 10.1126/science.1185383

Goodland, 1997, Environmental sustainability in agriculture: diet matters, Ecol. Econ., 23, 189, 10.1016/S0921-8009(97)00579-X

Gopalakrishnan, 2011, A novel framework to classify marginal land for sustainable biomass feedstock production, J. Environ. Qual., 40, 1593, 10.2134/jeq2010.0539

Grundmann, 2014, The impact of global trends on bioenergy production, food supply and global warming potential - an impact assessment of land-use changes in four regions in Germany using linear programming, J. Land Use Sci., 9, 34, 10.1080/1747423X.2012.719935

Gurría

Haberl, 2014, Human appropriation of net primary production: patterns, trends, and planetary boundaries, Annu. Rev. Environ. Resour., 39, 363, 10.1146/annurev-environ-121912-094620

Haberl, 2013, Bioenergy: how much can we expect for 2050?, Environ. Res. Lett., 8, 10.1088/1748-9326/8/3/031004

Haberl, 2011, Global bioenergy potentials from agricultural land in 2050: sensitivity to climate change, diets and yields, Biomass Bioenergy, 35, 4753, 10.1016/j.biombioe.2011.04.035

Haberl, 2000, Cascade utilization of biomass: strategies for a more efficient use of a scarce resource, Ecol. Eng., 16, 111, 10.1016/S0925-8574(00)00059-8

Hertel, 2013, Competition for land in the global bioeconomy, Agric. Econ. (United Kingdom), 44, 129

Hoogwijk, 2003, Exploration of the ranges of the global potential of biomass for energy, Biomass Bioenergy, 25, 119, 10.1016/S0961-9534(02)00191-5

IEA, 2017, Technology roadmap, Deliv. Sustain. Bioenergy, 94

Ignaciuk, 2006, Competition between biomass and food production in the presence of energy policies: a partial equilibrium analysis, Energy Policy, 34, 1127, 10.1016/j.enpol.2004.09.010

Immerzeel, 2014, Biodiversity impacts of bioenergy crop production: a state-of-the-art review, GCB Bioenergy, 6, 183, 10.1111/gcbb.12067

Karlberg, 2015, Tackling biomass scarcity-from vicious to virtuous cycles in sub-Saharan Africa, Curr. Opin. Environ. Sustain., 15, 1, 10.1016/j.cosust.2015.07.011

Kim, 2004, Global potential bioethanol production from wasted crops and crop residues, Biomass Bioenergy, 26, 361, 10.1016/j.biombioe.2003.08.002

Konadu, 2015, Land use implications of future energy system trajectories-The case of the UK 2050 Carbon Plan, Energy Policy, 86, 328, 10.1016/j.enpol.2015.07.008

Lajdova, 2016, Consequences of maize cultivation intended for biogas production, Agric. Econ. Ekon., 62, 543

Langeveld, 2014, Analyzing the effect of biofuel expansion on land use in major producing countries: evidence of increased multiple cropping, Biofuels Bioprod. Biorefin., 8, 49, 10.1002/bbb.1432

Larsen, 2017, Possibilities for near-term bioenergy production and GHG-mitigation through sustainable intensification of agriculture and forestry in Denmark, Environ. Res. Lett., 12, 10.1088/1748-9326/aa9001

Lotze-Campen, 2010, Scenarios of global bioenergy production: the trade-offs between agricultural expansion, intensification and trade, Ecol. Model., 221, 2188, 10.1016/j.ecolmodel.2009.10.002

Lotze-Campen, 2014, Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison, Agric. Econ. (United Kingdom), 45, 103

Lywood, 2009, Impact of protein concentrate coproducts on net land requirement for European biofuel production, GCB Bioenergy, 1, 346, 10.1111/j.1757-1707.2009.01026.x

Manceron, 2014, Proteins source in animal feeds. Oilseeds fats crop, Lipids, 21, 1

Meehan, 2017, Exploring the potential of grass feedstock from marginal land in Ireland: does marginal mean lower yield?, Biomass Bioenergy, 107, 361, 10.1016/j.biombioe.2017.10.014

Meyfroidt, 2010, Forest transitions, trade, and the global displacement of land use, Proc. Natl. Acad. Sci., 107, 20917, 10.1073/pnas.1014773107

Mottet, 2017, Livestock: on our plates or eating at our table? A new analysis of the feed/food debate, Glob. Food Sec., 1

Naylor, 2005, Losing the links between livectock and land, Science, 310, 1621, 10.1126/science.1117856

Nebehay

Nonhebel, 2012, Global food supply and the impacts of increased use of biofuels, Energy, 37, 115, 10.1016/j.energy.2011.09.019

Nonhebel, 2007, Energy from agricultural residues and consequences for land requirements for food production, Agric. Syst., 94, 586, 10.1016/j.agsy.2007.02.004

Nonhebel, 2004, On resource use in food production systems: the value of livestock as “rest-stream upgrading system, Ecol. Econ., 48, 221, 10.1016/j.ecolecon.2003.09.013

OECD/FAO, 2018, 191

Özdemir, 2009, Land substitution effects of biofuel side products and implications on the land area requirement for EU 2020 biofuel targets, Energy Policy, 37, 2986, 10.1016/j.enpol.2009.03.051

Parodi, 2018, The potential of future foods for sustainable and healthy diets, Nat. Sustain., 1, 782, 10.1038/s41893-018-0189-7

Persson, 2015, The impact of biofuel demand on agricultural commodity prices: a systematic review, Adv. Bioenergy Sustain. Chall., 4, 465, 10.1002/9781118957844.ch30

Persson, 2013, SOCIO-ECONOMIC consequences OF increased biomass demand, 56

Plantinga, 2015, Integrating economic land-use and biophysical models, Annu. Rev. Resour. Econ., 7, 233, 10.1146/annurev-resource-100814-125056

Poore, 2018, Reducing food's environmental impacts through producers and consumers, Science, 360, 987, 10.1126/science.aaq0216

Popp, 2011, The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system, Environ. Res. Lett., 6, 10.1088/1748-9326/6/3/034017

Porkka, 2013, From food insufficiency towards trade dependency: a historical analysis of global food availability, PLoS One, 8, 10.1371/journal.pone.0082714

Rood

Röös, 2017, Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures, Glob. Environ. Chang., 47, 1, 10.1016/j.gloenvcha.2017.09.001

Rossi, 2008

Rulli, 2016, The water-land-food nexus of first-generation biofuels, Sci. Rep., 6, 1, 10.1038/srep22521

Rulli, 2012, Global land and water grabbing, Proc. Natl. Acad. Sci., 110, 892, 10.1073/pnas.1213163110

Russi, 2008, An integrated assessment of a large-scale biodiesel production in Italy: killing several birds with one stone?, Energy Policy, 36, 1169, 10.1016/j.enpol.2007.11.016

Scarlat

Scarlat, 2013, Possible impact of 2020 bioenergy targets on European Union land use. A scenario-based assessment from national renewable energy action plans proposals, Renew. Sustain. Energy Rev., 18, 595, 10.1016/j.rser.2012.10.040

Schader, 2015, Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability, J. R. Soc. Interface, 12, 20150891, 10.1098/rsif.2015.0891

Scherhaufer, 2018, Environmental impacts of food waste in Europe, Waste Manag., 77, 98, 10.1016/j.wasman.2018.04.038

Schmidt, 2012, Regional energy autarky: potentials, costs and consequences for an Austrian region, Energy Policy, 47, 211, 10.1016/j.enpol.2012.04.059

Simon, 2009, Modelling sustainable bioenergy potentials from agriculture for Germany and Eastern European countries, Biomass Bioenergy, 33, 603, 10.1016/j.biombioe.2008.10.001

Smeets, 2007, A bottom-up assessment and review of global bio-energy potentials to 2050, Prog. Energy Combust. Sci., 33, 56, 10.1016/j.pecs.2006.08.001

Smil, 2012

Smith, 2010, Competition for land, Philos. Trans. R. Soc. Lond. B Biol. Sci., 365, 2941, 10.1098/rstb.2010.0127

Sorda, 2011, The response of the German agricultural sector to the envisaged biofuel targets in Germany and abroad: a CGE simulation, Ger. J. Agric. Econ., 60, 243

Steubing, 2010, Bioenergy in Switzerland: assessing the domestic sustainable biomass potential, Renew. Sustain. Energy Rev., 14, 2256, 10.1016/j.rser.2010.03.036

Strapasson, 2017, On the global limits of bioenergy and land use for climate change mitigation, GCB Bioenergy, 9, 1721, 10.1111/gcbb.12456

Stürmer, 2013, Implications of agricultural bioenergy crop production in a land constrained economy - the example of Austria, Land Use Policy, 30, 570, 10.1016/j.landusepol.2012.04.020

Styles, 2015, Cattle feed or bioenergy? Consequential life cycle assessment of biogas feedstock options on dairy farms, GCB Bioenergy, 7, 1034, 10.1111/gcbb.12189

Taheripour, 2011, Implications of biofuels mandates for the global livestock industry: a computable general equilibrium analysis, Agric. Econ., 42, 325, 10.1111/j.1574-0862.2010.00517.x

Taheripour, 2010, Implications of the biofuels boom for the global livestock industry: a computable general equilibrium analysis, GTAP Work. Pap., 3194, 1

Thornton, 2010, Livestock production: recent trends, future prospects, Philos. Trans. R. Soc. London.Ser. B, Biol. Sci., 365, 2853, 10.1098/rstb.2010.0134

Thrän, 2010, Global biomass potentials - resources, drivers and scenario results, Energy Sustain. Dev., 14, 200, 10.1016/j.esd.2010.07.004

Timilsina, 2012, The impacts of biofuels targets on land-use change and food supply: a global CGE assessment, Agric. Econ., 43, 315, 10.1111/j.1574-0862.2012.00585.x

Tonini, 2016, Environmental implications of the use of agro-industrial residues for biorefineries: application of a deterministic model for indirect land-use changes, GCB Bioenergy, 8, 690, 10.1111/gcbb.12290

Treesilvattanakul, 2014, Application of US and EU sustainability criteria to analysis of biofuels-induced land use change, Energies, 7, 5119, 10.3390/en7085119

Trink, 2010, Regional economic impacts of biomass based energy service use: a comparison across crops and technologies for East Styria, Austria, Energy Policy, 38, 5912, 10.1016/j.enpol.2010.05.045

Tufvesson, 2013, Environmental performance of biogas produced from industrial residues including competition with animal feed - life-cycle calculations according to different methodologies and standards, J. Clean. Prod., 53, 214, 10.1016/j.jclepro.2013.04.005

Tukker, 2014

UN General Assembly, 2015

van Hal, 2019, Upcycling food leftovers and grass resources through livestock: impact of livestock system and productivity, J. Clean. Prod., 219, 485, 10.1016/j.jclepro.2019.01.329

Van Kernebeek, 2016, Saving land to feed a growing population: consequences for consumption of crop and livestock products, Int. J. Life Cycle Assess., 21, 677, 10.1007/s11367-015-0923-6

Van Stappen, 2016, Consequential environmental life cycle assessment of a farm-scale biogas plant, J. Environ. Manag., 175, 20, 10.1016/j.jenvman.2016.03.020

Van Zanten, 2018, Defining a land boundary for sustainable livestock consumption, Glob. Chang. Biol., 24, 4185, 10.1111/gcb.14321

Van Zanten, 2016, Opinion paper : the role of livestock in a sustainable diet : a land-use perspective, Animal, 10, 547, 10.1017/S1751731115002694

Van Zanten, 2014, Assessing environmental consequences of using co-products in animal feed, Int. J. Life Cycle Assess., 19, 79, 10.1007/s11367-013-0633-x

van Zanten, 2016, Global food supply: land use efficiency of livestock systems, Int. J. Life Cycle Assess., 21, 747, 10.1007/s11367-015-0944-1

Warner, 2013, Modeling biofuel expansion effects on land use change dynamics, Environ. Res. Lett., 8, 10.1088/1748-9326/8/1/015003

Weinzettel, 2013, Affluence drives the global displacement of land use, Glob. Environ. Chang., 23, 433, 10.1016/j.gloenvcha.2012.12.010

Welfle, 2014, Securing a bioenergy future without imports, Energy Policy, 68, 1, 10.1016/j.enpol.2013.11.079

Willett, 2019, Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems, Lancet, 6736, 3

Winchester, 2017, The impact of oil prices on bioenergy, emissions and land use, Energy Econ., 65, 219, 10.1016/j.eneco.2017.05.008

Wirsenius, 2003, The biomass metabolism of the food system: a model-based survey of the global and regional turnover of food biomass, J. Ind. Ecol., 7, 47, 10.1162/108819803766729195

Wise, 2014, Agriculture, land use, energy and carbon emission impacts of global biofuel mandates to mid-century, Appl. Energy, 114, 763, 10.1016/j.apenergy.2013.08.042

Zabaniotou, 2018, Redesigning a bioenergy sector in EU in the transition to circular waste-based Bioeconomy-A multidisciplinary review, J. Clean. Prod., 177, 197, 10.1016/j.jclepro.2017.12.172