The axiomatic approach to chemical concepts
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ruedenberg, 1962, The physical nature of the chemical bond, Rev. Mod. Phys., 34, 326, 10.1103/RevModPhys.34.326
Kutzelnigg, 1973, The physical mechanism of the chemical bond, Angew. Chem. Int. Ed., 12, 546, 10.1002/anie.197305461
Kitaura, 1976, New energy decomposition scheme for molecular-interactions within Hartree-Fock approximation, Int. J. Quantum Chem., 10, 325, 10.1002/qua.560100211
Moffitt, 1951, Atoms in molecules and crystals, Proc. R. Soc. London, Ser. A, 210, 245, 10.1098/rspa.1951.0244
Bader, 1964, Binding regions in polyatomic molecules and electron density distributions, J. Am. Chem. Soc., 86, 5070, 10.1021/ja01077a005
Bader, 1967, Molecular charge distributions and chemical binding, J. Chem. Phys., 46, 3341, 10.1063/1.1841222
Bader, 1968, A view of bond formation in terms of molecular charge distributions, Can. J. Chem., 46, 953, 10.1139/v68-157
Pearson, 1969, Symmetry rule for predicting molecular structure and reactivity, J. Amer. Chem.Soc., 91, 1252, 10.1021/ja01033a058
Head-Gordon, 1996, Quantum chemistry and molecular processes, J. Phys. Chem., 100, 13213, 10.1021/jp953665+
Johnson, 2012, Charge density and chemical reactivity: a unified view from conceptual DFT, 715
Mulliken, 1955, Electronic population analysis on LCAO-MO molecular wave functions 1, J. Chem. Phys., 23, 1833, 10.1063/1.1740588
Mulliken, 1955, Electronic population analysis on LCAO-MO molecular wave functions 2, J. Chem. Phys., 23, 1841, 10.1063/1.1740589
Mulliken, 1955, Electronic population analysis on LCAO-MO molecular wave functions 4, J. Chem. Phys., 23, 2343, 10.1063/1.1741877
Mulliken, 1955, Electronic population analysis on LCAO-MO molecular wave functions 3, J. Chem. Phys., 23, 2338, 10.1063/1.1741876
Mulliken, 1989
Fukui, 1952, A molecular orbital theory of reactivity in aromatic hydrocarbons, J. Chem. Phys., 20, 722, 10.1063/1.1700523
Fukui, 1953, A free-electron model for discussing reactivity in unsaturated hydrocarbons, J. Chem. Phys., 21, 174, 10.1063/1.1698592
Fukui, 1954, Theory of substitution in conjugated molecules, Bull. Chem. Soc. Japan, 27, 423, 10.1246/bcsj.27.423
Fukui, 1975
Hoffmann, 1965, Selection rules for concerted cycloaddition reactions, J. Am. Chem. Soc., 87, 2046, 10.1021/ja01087a034
Woodward, 1965, Selection rules for sigmatropic reactions, J. Am. Chem. Soc., 87, 2511, 10.1021/ja01089a050
Woodward, 1965, Stereochemistry of electrocyclic reactions, J. Am. Chem. Soc., 87, 395, 10.1021/ja01080a054
Woodward, 1969, Conservation of orbital symmetry, Angew. Chem., Int.Ed.Engl., 8, 781, 10.1002/anie.196907811
Albright, 1985
Myung-Hwan, 2000, Perspective on “an extended H++ckel theory. I Hydrocarbons”, Theoretical. Chem. Acc.: Theory., Comp. Model. (Theoretica Chim. Acta), 103, 252, 10.1007/s002149900064
West, 2015, A comprehensive analysis in terms of molecule-intrinsic, quasi-atomic orbitals. II. Strongly correlated MCSCF wave functions, J. Phys. Chem. A, 119, 10360, 10.1021/acs.jpca.5b03399
West, 2015, A comprehensive analysis in terms of molecule-intrinsic, quasi-atomic orbitals. III. The covalent bonding structure of urea, J. Phys. Chem. A, 119, 10368, 10.1021/acs.jpca.5b03400
West, 2015, A comprehensive analysis in terms of molecule-intrinsic quasi-atomic orbitals. IV. Bond breaking and bond forming along the dissociative reaction path of dioxetane, J. Phys. Chem. A, 119, 10376, 10.1021/acs.jpca.5b03402
West, 2013, A comprehensive analysis of molecule-intrinsic quasi-atomic, bonding, and correlating orbitals. I. Hartree-Fock wave functions, J. Chem. Phys., 139, 234107, 10.1063/1.4840776
Wu, 2009, Density-based energy decomposition analysis for intermolecular interactions with variationally determined intermediate state energies, J. Chem. Phys., 131, 164112, 10.1063/1.3253797
Azar, 2012, An energy decomposition analysis for intermolecular interactions from an absolutely localized molecular orbital reference at the coupled-cluster singles and doubles level, J. Chem. Phys., 136, 10.1063/1.3674992
Thirman, 2015, An energy decomposition analysis for second-order Moller-Plesset perturbation theory based on absolutely localized molecular orbitals, J. Chem. Phys., 143, 10.1063/1.4929479
Ge, 2018, Energy decomposition analysis for exciplexes using absolutely localized molecular orbitals, J. Chem. Phys., 148, 13, 10.1063/1.5017510
Frenking, 2007, Unicorns in the world of chemical bonding models, J. Comput. Chem., 28, 15, 10.1002/jcc.20543
Ayers, 2015, Six questions on topology in theoretical chemistry, Comput. Theor. Chem., 1053, 2, 10.1016/j.comptc.2014.09.028
Ayers, 2000, Atoms in molecules, an axiomatic approach. I. Maximum transferability, J. Chem. Phys., 113, 10886, 10.1063/1.1327268
Ayers, 2007, The physical basis of the hard/soft acid/base principle, Faraday Discuss., 135, 161, 10.1039/B606877D
Matta, 2006, An experimentalist's reply to “What is an atom in a molecule?”, J. Phys. Chem. A, 110, 6365, 10.1021/jp060761+
Shaik, 2013, One molecule, two atoms, three views, four bonds?, Angew. Chemie-Inte. Ed., 52, 3020, 10.1002/anie.201208206
Hoffmann, 2003, A conversation on VB vs MO theory: a never-ending rivalry?, Acc. Chem. Res., 36, 750, 10.1021/ar030162a
Hoffmann, 1998, Qualitative thinking in the age of modern computational chemistry - or what Lionel Salem knows, Theochem-J. Mol. Struct., 424, 1, 10.1016/S0166-1280(97)00219-4
Sola, 2017, Why aromaticity is a suspicious concept? Why?, Front. Chem., 5, 4, 10.3389/fchem.2017.00022
Grunenberg, 2017, Ill-defined chemical concepts: the problem of quantification, Int. J. Quantum Chem., 117, 10.1002/qua.25359
Cerofolini, 2007, 1118
Cyranski, 2002, To what extent can aromaticity be defined uniquely?, J. Org. Chem., 67, 1333, 10.1021/jo016255s
Heidar-Zadeh, 2018, Information-theoretic approaches to atoms-in-molecules: Hirshfeld family of partitioning schemes, J. Phys. Chem. A, 122, 4219, 10.1021/acs.jpca.7b08966
Danovich, 2013, A response to the critical comments on “one molecule, two atoms, three views, four bonds?”, Angew. Chemie-Int. Ed., 52, 5926, 10.1002/anie.201302350
Grunenberg, 2012, Quantum chemistry quadruply bonded carbon, Nature Chem., 4, 154, 10.1038/nchem.1274
Shaik, 2012, Quadruple bonding in C-2 and analogous eight-valence electron species, Nat. Chem., 4, 195, 10.1038/nchem.1263
Frenking, 2013, Critical comments on “one molecule, two atoms, three views, four bonds?”, Angew. Chemie-Int. Ed., 52, 5922, 10.1002/anie.201301485
Ramos-Cordoba, 2013, Local spin analysis and chemical bonding, Chemistry-a Eur. J., 19, 15267, 10.1002/chem.201300945
Xu, 2014, Insights into the perplexing nature of the bonding in C-2 from generalized valence bond calculations, J. Chem. Theory Comp., 10, 195, 10.1021/ct400867h
Danovich, 2014, The nature of the fourth bond in the ground state of C-2: the quadruple bond conundrum, Chemistry-a Eur. J., 20, 6220, 10.1002/chem.201400356
Cooper, 2015, Why is the bond multiplicity in C-2 so elusive?, Comput. Theor. Chem., 1053, 189, 10.1016/j.comptc.2014.08.024
Shaik, 2015, Response to the Comment by J. Grunenberg on “the nature of the fourth bond in the ground state of C- 2: the quadruple bond conundrum'', Chemistry-a Eur. J., 21, 17127, 10.1002/chem.201503882
Macrae, 2016, Puzzles in bonding and spectroscopy: the case of dicarbon, Sci. Prog., 99, 1, 10.3184/003685016X14509452393033
Shaik, 2016, The quadruple bonding in C-2 reproduces the properties of the molecule, Chemistry-a Eur. J., 22, 4116, 10.1002/chem.201600011
Zou, 2016, C-2 in a box: determining its intrinsic bond strength for the X-1 sigma(+)(g) ground state, Chemistry-a Eur. J., 22, 4087, 10.1002/chem.201503750
Tchougreeff, 2016, Two theorems about C-2 and some more, Mol. Phys., 114, 1423, 10.1080/00268976.2016.1158422
Cooper, 2016, New insights from domain-averaged Fermi holes and bond order analysis into the bonding conundrum in C-2, Mol. Phys., 114, 1270, 10.1080/00268976.2015.1112925
de Sousa, 2016, Is there a quadruple bond in C-2?, J. Chem. Theory Comp., 12, 2234, 10.1021/acs.jctc.6b00055
Shaik, 2016, A Response to a comment by G. Frenking and M. Hermann on: “the quadruple bonding in C-2 reproduces the properties of the molecule”, Chemistry-a Eur. J., 22, 18977, 10.1002/chem.201602840
Frenking, 2016, Comment on “the quadruple bonding in C-2 reproduces the properties of the molecule”, Chemistry-a Eur. J., 22, 18975, 10.1002/chem.201601382
Kepp, 2017, Trends in strong chemical bonding in C-2, CN, CN-, CO, N-2, NO, NO+, and O-2, J. Phys. Chem. A, 121, 9092, 10.1021/acs.jpca.7b08201
Varandas, 2018, C-n(n=2-4): current status, Phil. Trans. R. Soc. a-Math. Phys. Eng. Sci., 376, 10.1098/rsta.2017.0145
Acke, 2018, The influence of correlation on (de)localization indices from a valencebond perspective, J. Mol. Model., 24, 275, 10.1007/s00894-018-3808-3
Liu, 2009, Electrophilicity, 179
Chattaraj, 2009, Electrophilicity index within a conceptual DFT framework, Annual Rep. Prog. Chem. C, 105, 13, 10.1039/b802832j
Mayr, 2001, Reference scales for the characterization of cationic electrophiles and neutral nucleophiles, J. Am. Chem. Soc., 123, 9500, 10.1021/ja010890y
Mayr, 1994, Scales of nucleophilicity and electrophilicity: a system for ordering polar organic and organometallic reactions, Angew. Chemie-Int. Ed. Eng., 33, 938, 10.1002/anie.199409381
Koch, 2017, On the charge state of titanium in titanium dioxide, J. Phys. Chem. Lett., 8, 1593, 10.1021/acs.jpclett.7b00313
Koch, 2017, On the charge state of titanium in titanium dioxide vol 8, pg 1593, J. Phys. Chem. Lett., 8, 3945, 10.1021/acs.jpclett.7b01886
Fias, 2008, Multidimensionality of delocalization indices and nucleus independent chemical shifts in polycyclic aromatic hydrocarbons, J. Comput. Chem., 29, 358, 10.1002/jcc.20794
De Proft, 2014, The conceptual density functional theory perspective of bonding, 233
Ayers, 2005, Perturbative perspectives on the chemical reaction prediction problem, Int. J. Quantum Chem., 101, 520, 10.1002/qua.20307
Gazquez, 2008, Perspectives on the density functional theory of chemical reactivity, J. Mexican Chem. Soc., 52, 3
Bader, 1990
Parr, 1986, Atoms in molecules: reply to Bader's comment, J. Chem. Phys., 85, 3135, 10.1063/1.450978
Bader, 1981, Quantum-theory of atoms in molecules: Dalton revisited, Adv. Quantum Chem., 14, 63, 10.1016/S0065-3276(08)60326-3
Goli, 2012, The two-component quantum theory of atoms in molecules (TC-QTAIM): foundations, Theor. Chem. Acc., 131, 10.1007/s00214-012-1208-9
Heidarzadeh, 2011, The quantum divided basins: a new class of quantum subsystems, Int. J. Quantum Chem., 111, 2788, 10.1002/qua.22629
Zadeh, 2011, Toward a fuzzy atom view within the context of the quantum theory of atoms in molecules: quasi-atoms, Theor. Chem. Acc., 128, 175, 10.1007/s00214-010-0811-x
Bader, 2005, The quantum mechanical basis of conceptual chemistry, Monatsh. Chem., 136, 819, 10.1007/s00706-005-0307-x
Politzer, 2010, Average local ionization energy: a review, J. Mol. Model., 16, 1731, 10.1007/s00894-010-0709-5
Murray, 1991, Surface local ionization energies and electrostatic potentials of the conjugate bases of a series of cyclic hydrocarbons in relation to their aqueous acidities, Int. J. Quantum Chem., 18, 91, 10.1002/qua.560400713
Sjoberg, 1990, Average local ionization energies on the molecular-surfaces of aromatic systems as guides to chemical-reactivity, Canadian J. Chem.-Revue Canadienne De Chimie, 68, 1440, 10.1139/v90-220
Ryabinkin, 2014, Average local ionization energy generalized to correlated wavefunctions, J. Chem. Phys., 141, 10.1063/1.4893424
Kohut, 2016, Generalized average local ionization energy and its representations in terms of Dyson and energy orbitals, J. Chem. Phys., 145, 10.1063/1.4961071
2002
Parr, 1982, On the geometric mean principle for electronegativity equalization, J. Am. Chem. Soc., 104, 3801, 10.1021/ja00378a004
Heidar-Zadeh, 2016, When is the fukui function not normalized? the danger of inconsistent energy interpolation models in density functional theory, J. Chem. Theory Comp., 12, 5777, 10.1021/acs.jctc.6b00494
Fuentealba, 2013, On the exponential model for energy with respect to number of electrons, J. Mol. Model., 19, 2849, 10.1007/s00894-012-1708-5
Noorizadeh, 2008, A new scale of electronegativity based on electrophilicity index, J. Phys. Chem. A, 112, 3486, 10.1021/jp709877h
Parr, 1983, Absolute hardness: companion parameter to absolute electronegativity, J. Am. Chem. Soc., 105, 7512, 10.1021/ja00364a005
Miranda-Quintana, 2016, Fractional electron number, temperature, and perturbations in chemical reactions, PCCP, 18, 15070, 10.1039/C6CP00939E
Cao, 1999, A novel electronegativity chi(CL) for elements and orbitals based on average attracting energy of valence-shell electrons in ground-state free atoms, Chinese J. Inorg. Chem., 15, 218
Liu, 1995, On atomic and orbital electronegativities and hardnesses, J. Am. Chem. Soc., 117, 3179, 10.1021/ja00116a023
Allen, 1992, Electronegativity - why has it been so difficult to define, Theochem-J. Mol. Struct., 93, 313, 10.1016/0166-1280(92)87083-C
Miranda-Quintana, 2018, Elementary derivation of the “| Δμ| big is good” rule, J. Phys. Chem. Lett., 9, 4344, 10.1021/acs.jpclett.8b01312