The asymptotic behavior of fragmentation processes
Tóm tắt
The fragmentation processes considered in this work are self-similar Markov processes which are meant to describe the evolution of a mass that falls apart randomly as time passes. We investigate their pathwise asymptotic behavior as t→∞. In the so-called homogeneous case, we first point at a law of large numbers and a central limit theorem for (a modified version of) the empirical distribution of the fragments at time t. These results are reminiscent of those of Asmussen and Kaplan [3] and Biggins [12] for branching random walks. Next, in the same vein as Biggins [10], we also investigate some natural martingales, which open the way to an almost sure large deviation principle by an application of the Gärtner-Ellis theorem. Finally, some asymptotic results in the general self-similar case are derived by time-change from the previous ones. Properties of size-biased picked fragments provide key tools for the study.
Tài liệu tham khảo
Aldous, D.J.: Deterministic and stochastic models for coalescence (aggregation, coagulation): a review of the mean-field theory for probabilists. Bernoulli 5, 3–48 (1999)
Aldous, D.J., Pitman, J.: The standard additive coalescent. Ann. Probab. 26, 1703–1726 (1998)
Asmussen, S., Kaplan, N.: Branching random walks. I–II. Stochastic Processes Appl. 4, 1–13 and 15–31 (1976)
Berestycki, J.: Ranked fragmentations. ESAIM, Probab. Stat. 6, 157–176 (2002). Available via http://www.edpsciences.org/ps/OnlinePSbis.html
Bertoin, J.: A fragmentation process connected to Brownian motion. Probab. Theory Relat. Fields 117, 289–301 (2000)
Bertoin, J.: Homogeneous fragmentation processes. Probab. Theory Relat. Fields 121, 301–318 (2001)
Bertoin, J.: Self-similar fragmentations. Ann. Inst. Henri Poincaré 38, 319–340 (2002)
Bertoin, J., Caballero, M.-E.: Entrance from 0+ for increasing semi-stable Markov processes. Bernoulli 8, 195–205 (2002)
Bertoin, J., Rouault, A.: Additive martingales and probability tilting for homogeneous fragmentations. Preprint (2003)
Biggins, J.D.: Martingale convergence in the branching random walk. J. Appl. Probab. 14, 25–37 (1977)
Biggins, J.D.: Chernoff’s theorem in the branching random walk. J. Appl. Probab. 14, 630–636 (1977)
Biggins, J.D.: The central limit theorem for the supercritical branching random walk, and related results. Stochastic Processes Appl. 34, 255–274 (1990)
Biggins, J.D.: Uniform convergence of martingales in the branching random walk. Ann. Probab. 20, 137–151 (1992)
Brennan, M.D., Durrett, R.: Splitting intervals. Ann. Probab. 14, 1024–1036 (1986)
Brennan, M.D., Durrett, R.: Splitting intervals. II. Limit laws for lengths. Probab. Theory Relat. Fields 75, 109–127 (1987)
Carmona, P., Petit, F., Yor, M.: On the distribution and asymptotic results for exponential functionals of Levy processes. In: Yor, M. (ed.), Exponential functionals and principal values related to Brownian motion. Biblioteca de la Revista Matemática Iberoamericana 1997
Dembo, A., Zeitouni, O.: Large deviations techniques and applications. Second edition. Berlin: Springer 1998
Filippov, A.F.: On the distribution of the sizes of particles which undergo splitting. Theory Probab. Appl. 6, 275–293 (1961)
Kolmogoroff, A.N.: Über das logarithmisch normale Verteilungsgesetz der Dimensionen der Teilchen bei Zerstückelung. C. R. (Doklady) Acad. Sci. URSS 31, 99–101 (1941)
Lamperti, J.: Semi-stable Markov processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 22, 205–225 (1972)
Lépingle, D.: La variation d’ordre p des semi-martingales. Z. Wahrscheinlichkeitstheorie verw. Gebiete 36, 295–316 (1976)
Lyons, R., Pemantle, R., Peres, Y.: Conceptual proofs of L log L citeria for mean behaviour of branching processes. Ann. Probab. 23, 1125–1138 (1995)
Miermont, G.: Self-similar fragmentations derived from the stable tree I: splitting at heights. Preprint (2003). To appear in Probab. Theory Relat. Fields
Miermont, G.: Self-similar fragmentations derived from the stable tree II: splitting at hubs. Preprint (2003)
Pitman, J.: Coalescent with multiple collisions. Ann. Probab. 27, 1870–1902 (1999)
Schweinsberg, J.: Coalescent with simultaneous multiple collisions. Electron J. Probab. 5–12, 1–50 (2000). http://www.math.washington.edu/˜ejpecp/ejp5contents.html
Sznitman, A.-S.: Topics in propagation of chaos. Ecole d’été de Probabilités de St-Flour XIX, Lect. Notes Math. 1464. Springer 1991