Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Cage silicon giống fullerene với 12 pentagon Si5 được ổn định bởi đơn vị V3
Tóm tắt
Các cụm silicon được dop bằng các nguyên tử kim loại chuyển tiếp (TM) không chỉ có thể giữ cấu trúc giống fullerene ổn định, mà còn có thể thể hiện các tính chất điện tử độc đáo. Nhiều cụm silicon được dop TM là mô hình lý tưởng để điều tra các vật liệu bán dẫn nano và các hiệu ứng cục bộ của các trạng thái ngưng tụ. Trong nghiên cứu này, các tính chất hình học và điện tử của ba nguyên tử V dop vào các cụm Si20 mang điện âm, trung hòa và mang điện dương đã được điều tra sử dụng các phương pháp tính toán hóa học lượng tử và tìm kiếm không thiên lệch dựa trên DFT, sử dụng phần mềm tối ưu hóa bầy đàn (CALYPSO). Các điểm tối thiểu toàn cục của các cụm V3Si20 mang điện âm, trung hòa và mang điện dương đều giữ một hình khối silicon giống fullerene với 12 pentagon Si5 được củng cố bởi một đơn vị V3. Ba nguyên tử V cho thấy tương tác mạnh dựa trên chiều dài liên kết, bậc liên kết Wiberg, bề mặt mật độ điện tích, và các orbital phân tử (MOs). Hơn nữa, các nguyên tử V đóng vai trò như người nhận electron dựa trên phân tích dân số tự nhiên (NPA), phân bố Hirshfeld sửa theo moment dipole nguyên tử (ADCH), và phân bố nguyên tử trong phân tử (AIM). Hơn nữa, V3Si20ˉ, V3Si20 và V3Si20+ cho thấy độ thơm đáng kể theo chuyển dịch hóa học độc lập hạt nhân (NICS), năng lượng ổn định thơm (ASE), và các tính toán chỉ số liên kết đa trung tâm.
Từ khóa
#cụm silicon #kim loại chuyển tiếp #cấu trúc fullerene #tính chất điện tử #tối ưu hóa bầy đànTài liệu tham khảo
Zutic I, Fabian J, Sarma SD (2004) Rev Mod Phys 76:323
Zdetsis AD (2007) Phys Rev B 76:075402
Röthlisberger U, Andreoni W, Parrinello M (1994) Phys Rev Lett 72:665
Kumar V, Kawazoe Y (2001) Phys Rev Lett 87:045503
Singh AK, Briere TM, Kumar V, Kawazoe Y (2003) Phys Rev Lett 91:146802
Kong XY, Xu HG, Zheng WJ (2012) J Chem Phys 137:064307
Ma WQ, Chen FY (2013) J Mol Model 19:4555
Robles R, Khanna SN (2009) Phys Rev B 80:115414
Li JR, Wang GH, Yao CH, Mu YW, Wan JG, Han M (2009) J Chem Phys 130:164514
Li JR, Yao CH, Mu YW, Wan JG, Han M (2009) J Mol Struct 916:139
Kumar V (2006) Comput Mater Sci 36:1
Neukermans S, Wang X, Veldeman N, Janssens E, Silverans RE, Lievens P (2006) Int J Mass Spectrom 252:145
Koyasu K, Akutsu M, Mitsui M, Nakajima A (2005) J Am Chem Soc 127:4998
Claes P, Janssens E, Ngan VT, Gruene P, Lyon JT, Harding DJ, Fielicke A, Nguyen MT, Lievens P (2011) Phys Rev Lett 107:173401
Lu J, Nagase S (2003) Phys Rev Lett 90:115506
Wang J, Zhao J, Ma L, Wang G, King RB (2007) Nanotechnology 18:235705
Khanna SN, Rao BK, Jena P (2002) Phys Rev Lett 89:01680301
Janssens E, Lievens P (2011) Adv Nat Sci 2:023001
Kumar V, Kawazoe Y (2002) Phys Rev B 65:073404
Ma L, Zhao J, Wang J, Lu Q, Zhu L, Wang G (2005) Chem Phys Lett 411:279
Koukaras NE, Garoufalis CS, Zdetsis DA (2006) Phys Rev B 73:235417
Kong LZ, Chelikowsky JR (2008) Phys Rev B 77:073401
Ponce-Vargas M, Muñoz-Castro A (2018) J Phys Chem C 122:12551
Sen A, Sen P (2017) J Phys Chem C 121:28490
Shibuta M, Ohta T, Nakaya M, Tsunoyama H, Eguchi T, Nakajima A (2015) J Am Chem Soc 137:14015
Liu Y, Li GL, Gao AM, Chen HY, Finlow D, Li QS (2011) Eur Phys J D 64:27
Guoa P, Zheng L, Zheng JM, Zhang R, Yang L, Ren Z (2011) Appl Surf Sci 258:705
Zhao R-N, Han J-G, Bai J-T, Liu F-Y, Sheng L-S (2010) Chem Phys 372:89
Zhao RN, Han JG, Bai JT, Sheng LS (2010) Chem Phys 378:82
Wang J, Liu Y, Li YC (2010) Phys Lett A 374:2736
Chuang F, Hsu C, Hsieh Y, Albao M (2010) Chin J Phys 48:82
Grubisic A, Ko YJ, Wang HP, Bowen KH (2009) J Am Chem Soc 131:10783
Yang AP, Ren Z-Y, Guo P, Wang G-H (2008) J Mol Struct 856:88
Xia XX, Hermann A, Kuang XY, Jin YY, Lu C, Xing XD (2016) J Phys Chem C 120:677
Koyasu K, Atobe J, Akutsu M, Mitsui M, Nakajima A (2007) J Phys Chem A 111:42
Ohara M, Koyasu K, Nakajima A, Kaya K (2003) Chem Phys Lett 371:490
Yang B, Xu X-L, Xu H-G, Farooq U, Zheng W-J (2019) Phys Chem Chem Phys 21:6207
Lu S-J, Xu X, Cao G-J, Xu H-G, Zheng W (2018) J Chem Phys 149:174314
Lu S-J, Xu X-L, Feng G, Xu H-G, Zheng W-J (2016) J Phys Chem C 120:25628
Lu S-J, Cao G-J, Xu X-L, Xu H-G, Zheng W-J (2016) Nanoscale 8:19769
Lu SJ, Hu LR, Xu XL, Xu HG, Chen H, Zheng WJ (2016) Phys Chem Chem Phys 18:20321
Kong XY, Deng XJ, Xu HG, Yang Z, Xu XL, Zheng WJ (2013) J Chem Phys 138:244312
Xu HG, Wu MM, Zhang ZG, Yuan JY, Sun Q, Zheng WJ (2012) J Chem Phys 136:104308
Xu HG, Wu MM, Zhang ZG, Sun Q, Zheng WJ (2011) Chin Phys B 20:043102
Han JG, Zhao RN, Duan YH (2007) J Phys Chem A 111:2148
Ji W, Luo C (2012) Int J Quantum Chem 112:2525
Ji W-X, Luo C (2010) Model Simul Mater Sci Eng 18:025011
Lu S-J, Xu H-G, Xu X-L, Zheng W-J (2017) J Phys Chem C 121:11851
Pham HT, Majumdar D, Leszczynski J, Nguyen MT (2017) Phys Chem Chem Phys 19:3115
Mai NT, Tung NT, Thuy PT, Hue NTM, Cuong NT (2017) Comput Theor Chem 1117:124
Lu S-J, Xu X-L, Xu H-G, Zheng W-J (2018) J Chem Phys 148:244306
Yang B, Xu H, Xu X, Zheng W (2018) J Phys Chem A 122:9886
Lu S-J, Wu L-S, Yin B-H, Lin F, Chao M-Y (2019) Mol Phys. https://doi.org/10.1080/00268976.2019.1656350
Lu S-J (2019) Mol Phys. https://doi.org/10.1080/00268976.2019.1682209
Wang J, Liu JH (2008) J Phys Chem A 112:4562
Zhao R-N, Han J-G, Duan Y-H (2014) Thin Solid Films 556:571
Palagin D, Teufl T, Reuter K (2013) J Phys Chem C 117:16182
Lu S-J, Wu L-S, Lin F (2018) Chem Phys Lett 709:60
Lu S-J (2018) Chem Phys Lett 713:58
Lu S-J, Wu L-S, Lin F (2018) Chem Phys Lett 707:108
Lu S-J, Wu L-S, Lin F (2019) Theor Chem Acc 138:48
Xu H-G, Zhang Z-G, Feng Y, Yuan J, Zhao Y, Zheng W (2010) Chem Phys Lett 487:204
Xu HG, Kong XY, Deng XJ, Zhang ZG, Zheng WJ (2014) J Chem Phys 140:024308
Huang X, Xu H-G, Lu S, Su Y, King RB, Zhao J, Zheng W (2014) Nanoscale. https://doi.org/10.1039/C4NR03130J
Huang X, Lu S-J, Liang X, Su Y, Sai L, Zhang Z-G, Zhao J, Xu H-G, Zheng W (2015) J Phys Chem C 119:10987
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2009) Gaussian 09, Revision B0.1. Gaussian Inc., Wallingford
Mardirossian N, Head-Gordon M (2017) Mol Phys 115:2315
Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibia A, Grimme S (2017) Phys Chem Chem Phys 19:32184
Becke AD (1993) J Chem Phys 98:1372
Becke AD (1993) J Chem Phys 98:5648
Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785
Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623
Woon DE, Dunning THJ (1993) J Chem Phys 98:1358
Balabanov NB, Peterson KA (2005) J Chem Phys 123:064107
Lu S-J, Xu X-L, Cao G-J, Xu H-G, Zheng W-J (2018) J Phys Chem C 122:2391
Lu S-J (2019) J Mol Struct 1183:202
Lv J, Wang YC, Zhu L, Ma YM (2012) J Chem Phys 137:084104
Lu S-J, Wu L-S, Lin F (2018) Comput Theor Chem 1139:102
Lu S-J, Farooq U, Xu H-G, Xu X-L, Zheng W-J (2019) Chin J Chem Phys 32:229
Francl MM, Pietro WJ, Hehre WJ (1982) J Chem Phys 77:3654
Rassolov VA, Pople JA, Ratner MA, Windus TL (1998) J Chem Phys 109:1223
Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910
Scuseria GE, Schaefer HF (1989) J Chem Phys 90:3700
Lu T, Chen F (2012) J Comput Chem 33:580
Reed AE, Weinhold F (1983) J Chem Phys 78:4066
Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735
Reed AE, Weinhold F (1985) J Chem Phys 83:1736
Carpenter JE (1978) Extension of lewis structure concepts to open-shell and excited-state molecular species. PhD. Thesis, University of Wisconsin, Madison, WI
Naaman R, Vager Z (1988) In the structure of small molecules and ions. Plenum Press, New York, pp 1115–1118
Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899
Carpenter JE, Weinhold F (1988) J Mol Struct 169:41
Akola J, Manninen M, Hakkinen H, Landman U, Li X, Wang LS (1999) Phys Rev B 60(R11):297
Tozer DJ, Handy NC (1998) J Chem Phys 109:10180
Langridge-Smith PRR, Morse MD, Hansen GP, Smalley RE (1984) J Chem Phys 80:593
Wyckoff RWG (1963) Crystal structures. Interscience, New York.
Lu S-J, Wu L-S, Yin B-H, Lin F, Chao M-Y (2019) Phys Chem Chem Phys 21:12241
Peterson KA, Figgen D, Dolg M, Stoll H (2007) J Chem Phys 126:124101
Lombardi JR, Davis B (2002) Chem Rev 102:2431
Zhu XL, Zeng XC, Lei YA, Pan B (2004) J Chem Phys 120:8985
Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297
Xu C, Taylor TR, Burton GR, Neumark DM (1998) J Chem Phys 108:1395
Zubarev DY, Boldyrev AI, Li X, Cui L-F, Wang L-S (2005) J Phys Chem A 109:11385
Peppernick SJ, Gunaratne KDD, Sayres SG, AW C Jr (2010) J Chem Phys 132: 044302
Schleyer PR, Christoph M, Dransfeld A, Jiao H, Hommes NJRE (1996) J Am Chem Soc 118:6317
Schleyer PR, Jiao H, Hommes NJRE, Malkin VG, Malkina OL (1997) J Am Chem Soc 119:12669
Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PR (2005) Chem Rev 105:3842
Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PR (2006) Org Lett 8:863
Lewars E Computational chemistry-introduction to the theory and applications of molecular and quantum mechanics, 2ed, P307.
Giambiagi M, Giambiagi MS, Mundim KC (1990) Struct Chem 1:423