The applications and research progresses of nickel–titanium shape memory alloy in reconstructive surgery

Qiang Li1, Yating Zeng2, Xiaoying Tang3
1Department of Orthopaedics, The Affiliated Hospital of Guilin Medical College, Guilin, China
2Biomedical Engineering Center, Beijing University of Technology, Beijing, China
3Department of Biomedical Engineering, School of Life, Beijing Institute of Technology, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Yahia L, Manceur A, Chaffraix P (2006) Bioperformance of shape memory alloy single crystals. Biomed Mater Eng 16(2):101–118

Guillemot F (2005) Recent advances in the design of titanium alloys for orthopedic applications. Expert Rev Med Devices 2(6):741–748

Williams DF (2003) Biomaterials and tissue engineering in reconstructive surgery. Sadhana 28(Parts 3, 4):563–574

Es-Souni M, Es-Souni M, Fischer-Brandies H (2005) Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal Bioanal Chem 381(3):557–567

Ma H, Cho C, Wilkinson T (2008) A numerical study on bolted end-plate connection using shape memory alloys. Mater Struct 41:1419–1426

Szold A (2006) Nitinol: shape-memory and super-elastic materials in surgery. Surg Endosc 20:1493–1496

Song G, Ma N, Li HN (2006) Applications of shape memory alloys in civil structures. Eng Struct 28(9):1266–1274

Andrawes B, DesRoches R (2007) Effect of hysteretic properties of superelastic shape memory alloys on the seismic performance of structures. Struct Control Health Monit 14(2):301–320

Gori F, Carnevale D, Doro Altan A et al (2006) A new hysteretic behavior in the electrical resistivity of flexinol shape memory alloys versus temperature. Int J Thermophys 27(3):866–879

Janke L, Czaderski C, Motavalli M et al (2005) Applications of shape memory alloys in civil engineering structures—overview, limits and new ideas. Mater Struct 38:578–592

Mertmann M, Vergani G (2008) Design and application of shape memory actuators. Eur Phys J Spec Top 158:221–230

Ryhanen J, Leminen A, Jamsa T et al (2006) A novel treatment of grade III acromioclavicular joint dislocations with a C-hook implant. Arch Orthop Trauma Surg 126:22–27

Wever DJ, Elstrodt JA, Veldhuizen AG et al (2002) Scoliosis correction with shape-memory metal: results of an experimental study. Eur Spine J 11:100–106

Petoumeno E, Kislyuk M, Hoederath H et al (2008) Corrosion susceptibility and nickel release of nickel titanium wires during clinical application. J Orofac Orthop 69:411–423

Sevilla P, Martorell F, Libenson C et al (2008) Laser welding of NiTi orthodontic archwires for selective force application. J Mater Sci Mater Med 19:525–529

Morawiec HZ, Lekston ZH, Kobus KF et al (2007) Superelastic NiTi springs for corrective skull operations in children with craniosynostosis. J Mater Sci Mater Med 18:1791–1798

Xu W, Frank TG, Stockham G et al (1999) Shape memory alloy fixator system for suturing tissue in minimal access surgery. Ann Biomed Eng 27:663–669

Ng Y, Shimi SM, Kernohan N et al (2006) Skin wound closure with a novel shape-memory alloy fixator. Surg Endosc 20:311–315

Singh R, Dahotre NB (2007) Corrosion degradation and prevention by surface modification of biometallic materials. J Mater Sci Mater Med 18:725–751

Wu LL, Liang HF, Cai CL et al (2005) Properties of diamond-like carbon films on Ti–Ni alloy. Biaomian Jishu 34(2):30–31

Yeung KW, Poon RW, Chu PK et al (2007) Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel–titanium alloys: a comparative study with commonly used medical grade materials. J Biomed Mater Res A 82(2):403–414

Tracana RB, Sousa JP, Carvalho GS (1994) Mouse inflammatory response to stainless steel corrosion products. Mater Sci Mater Med 5(10):596–600

Wang J, Li N, Han EH et al (2006) Effect of pH, temperature and Cl− concentration on electrochemical behavior of NiTi shape memory alloy in artificial saliva. J Mater Sci Mater Med 17(10):885–890

Wang J, Li N, Han E et al (2006) Effect of pH, temperature and Cl− concentration on electrochemical behavior of NiTi shape memory alloy in artificial saliva. J Mater Sci Mater Med 17:885–890

Eggeler G, Hornbogen E, Yawny A et al (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A 378(1–2):24–33

Hornbogen E (2004) Review: thermo-mechanical fatigue of shape memory alloys. J Mater Sci 39(2):385–399

Williams DF (1999) The Williams dictionary of biomaterials. University Press, Liverpool

Es-Souni M, Es-Souni M, Fischer-Brandies H (2005) Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal Bioanal Chem 381:557–567

Hunt JA, Rhodes NP, Williams DF (1995) Analysis of the inflammatory exudates surrounding implanted polymers using flow cytometry. J Mater Sci Mater Med 6:839

Liu H, Luo Y, Higa M et al (2007) Biochemical evaluation of an artificial anal sphincter made from shape memory alloys. J Artif Organs 10:223–227

Chu CL, Wang RM, Hu T, Yin LH et al (2009) XPS and biocompatibility studies of titania film on anodized NiTi shape memory alloy. J Mater Sci Mater Med 20:223–228

Chu CL (2006) Bioactive NiTi shape memory alloy fabricated by oxidizing in H2O2 solution and subsequent NaOH treatment. J Mater Sci 41:1671–1674

Chrzanowski W, Abou Neel EA, Armitage DA et al (2008) Surface preparation of bioactive Ni–Ti alloy using alkali, thermal treatments and spark oxidation. J Mater Sci Mater Med 19:1553–1557

Barrabes M, Michiardi A, Aparicio C et al (2007) Oxidized nickel–titanium foams for bone reconstructions: chemical and mechanical characterization. J Mater Sci Mater Med 18:2123–2129

Roy RK, Lee KR (2007) Biomedical applications of diamond-like carbon coatings: a review. J Biomed Mater Res B Appl Biomater 83(1):72–84

Schaefer O, Lohrmann C, Winterer J et al (2004) Endovascular treatment of superficial femoral artery occlusive disease with stents coated with diamond-like carbon. Clin Radiol 59(12):1128–1131

Linder S, Pinkowski W, Aepfelbacher M (2002) Adhesion, cytoskeletal architecture and activation status of primary human macrophages on a diamond-like carbon coated surface. Biomaterials 23(3):767–773

Kobayashi S, Ohgoe Y, Ozeki K et al (2007) Dissolution effect and cytotoxicity of diamond-like carbon coatings on orthodontic archwires. J Mater Sci Mater Med 18:2263–2268

Michiardi A, Aparicio C, Planell JA et al (2006) New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility. J Biomed Mater Res B Appl Biomater 77(2):249–256

Chu CL, Hu T, Wu SL et al (2007) Surface structure and properties of biomedical NiTi shape memory alloy after Fenton’s oxidation. Acta Biomater 3(5):795–806

Chrzanowski W, Abou Neel EA, Armitage DA et al (2008) Surface preparation of bioactive Ni–Ti alloy using alkali, thermal treatments and spark oxidation. J Mater Sci Mater Med 19(4):1553–1557

Cheng Y, Cai W, Li HT et al (2006) Surface modification of NiTi alloy with tantalum to improve its biocompatibility and radiopacity. J Mater Sci 41:4961–4964

Heng Y, Cai W, Li HT et al (2006) Surface modification of NiTi alloy with tantalum to improve its biocompatibility and radiopacity. J Mater Sci 41(15):4961–4964

Boccaccini AR, Peters C, Roether JA et al (2006) Electrophoretic deposition of polyetheretherketone (PEEK) and PEEK/bioglass coatings on NiTi shape memory alloy wires. J Mater Sci 41:8152–8159

Li C-Y, Chen M-F, Qiang W (2006) Study on the biomimetic HA formation on NiTi implant and its biological response. Chin J Biomed Eng 25(3):355–358

Burke M, Clarke B, Rochev Y et al (2008) Estimation of the strength of adhesion between a thermoresponsive polymer coating and nitinol wire. J Mater Sci Mater Med 19:1971–1979

Alves-Claro APR, Claro FAE, Uzumaki ET (2008) Wear resistance of nickel–titanium endodontic files after surface treatment. J Mater Sci Mater Med 19:3273–3277

Samaroo HD, Lu J, Webster TJ (2008) Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness. Int J Nanomedicine 3(1):75–82

Liu XM, Wu SL, Chan YL et al (2007) Surface characteristics, biocompatibility, and mechanical properties of nickel–titanium plasma-implanted with nitrogen at different implantation voltages. J Biomed Mater Res A 82(2):469–478

Li UM, Iijima M, Endo K et al (2007) Application of plasma immersion ion implantation for surface modification of nickel–titanium rotary instruments. Dent Mater J 26(4):467–473

Yanga H, Qiana L, Zhou Z et al (2007) Effect of surface treatment by ceramic conversion on the fretting behavior of NiTi shape memory alloy. Tribol Lett 25(3):215–224

Chu CL, Lin PH (2005) Characterization of transformation behavior in porous Ni-rich NiTi shape memory alloy fabricated by combustion synthesis. J Mater Sci 40:773–776

Rhalmi S, Charette S, Assad M et al (2007) The spinal cord dura mater reaction to nitinol and titanium alloy particles: a 1-year study in rabbits. Eur Spine J 16:1063–1072

Liang CY, Yang Y, Wang HS et al (2008) Preparation of porous microstructures on NiTi alloy surface with femtosecond laser pulses. Chin Sci Bull 53(5):700–705

Likibi F, Assad M, Coillard C et al (2005) Influence of biomaterial structure and hardness on its osseo-integration: histomorphometric evaluation of porous nitinol and titanium implants. Eur J Orthop Surg Traumatol 15:257–263

Likibi F, Assad M, Jarzem P (2004) Osseointegration study of porous nitinol versus titanium orthopaedic implants. Eur J Orthop Surg Traumatol 14:209–213

Li B, Rong L, Li Y (1999) Microstructure and superelasticity of porous NiTi alloy. Sci China Ser E 42(1):94–99

Nie Q, Ji ZY, Lin JX (2007) Surface nanostructures orienting self-protection of an orthodontic nickel–titanium shape memory alloys wire. Chin Sci Bull 52(21):3020–3023

Goryczka T, Lelatko J, Ochin P (2008) Nanocrystalline platinum layer deposited on NiTiCu shape memory strip. Eur Phys J Spec Top 158:33–38

Raghavan V (2009) Al–Ni–Ti (aluminum–nickel–titanium). JPEDAV 30:77–78

Raghavan V (2009) Al–Co–Ni–Ti (aluminum–cobalt–nickel–titanium). JPEDAV 30:199–200

Raghavan V (2009) Al–Fe–Ni–Ti (aluminum–iron–nickel–titanium). JPEDAV 30:287–290

Prasad RVS, Phanikumar G (2009) Amorphous and nano crystalline phase formation in Ni2MnGa ferromagnetic shape memory alloy synthesized by melt spinning. J Mater Sci 44:2553–2559

Chernenko VA, Oikawa K, Chmielus M, Besseghini S et al (2009) Properties of Co-alloyed Ni–Fe–Ga ferromagnetic shape memory alloys. JMEPEG 18:548–553

Bujoreanu LG, Stanciu S et al (2009) Factors influencing the reversion of stress-induced martensite to austenite in a Fe–Mn–Si–Cr–Ni shape memory alloy. JMEPEG 18:500–505

Liu H, Liu X-j (2007) Corrosion resistance and biocompatibility of FeMnSiCr shape memory alloy. Corros Sci Prot Technol 19(4):293–295

Gil FJ, Solano E, Pena J et al (2004) Microstructural, mechanical and citotoxicity evaluation of different NiTi and NiTiCu shape memory alloys. J Mater Sci Mater Med 15:1181–1185