The applications and research progresses of nickel–titanium shape memory alloy in reconstructive surgery
Tóm tắt
Từ khóa
Tài liệu tham khảo
Yahia L, Manceur A, Chaffraix P (2006) Bioperformance of shape memory alloy single crystals. Biomed Mater Eng 16(2):101–118
Guillemot F (2005) Recent advances in the design of titanium alloys for orthopedic applications. Expert Rev Med Devices 2(6):741–748
Williams DF (2003) Biomaterials and tissue engineering in reconstructive surgery. Sadhana 28(Parts 3, 4):563–574
Es-Souni M, Es-Souni M, Fischer-Brandies H (2005) Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal Bioanal Chem 381(3):557–567
Ma H, Cho C, Wilkinson T (2008) A numerical study on bolted end-plate connection using shape memory alloys. Mater Struct 41:1419–1426
Szold A (2006) Nitinol: shape-memory and super-elastic materials in surgery. Surg Endosc 20:1493–1496
Song G, Ma N, Li HN (2006) Applications of shape memory alloys in civil structures. Eng Struct 28(9):1266–1274
Andrawes B, DesRoches R (2007) Effect of hysteretic properties of superelastic shape memory alloys on the seismic performance of structures. Struct Control Health Monit 14(2):301–320
Gori F, Carnevale D, Doro Altan A et al (2006) A new hysteretic behavior in the electrical resistivity of flexinol shape memory alloys versus temperature. Int J Thermophys 27(3):866–879
Janke L, Czaderski C, Motavalli M et al (2005) Applications of shape memory alloys in civil engineering structures—overview, limits and new ideas. Mater Struct 38:578–592
Mertmann M, Vergani G (2008) Design and application of shape memory actuators. Eur Phys J Spec Top 158:221–230
Ryhanen J, Leminen A, Jamsa T et al (2006) A novel treatment of grade III acromioclavicular joint dislocations with a C-hook implant. Arch Orthop Trauma Surg 126:22–27
Wever DJ, Elstrodt JA, Veldhuizen AG et al (2002) Scoliosis correction with shape-memory metal: results of an experimental study. Eur Spine J 11:100–106
Petoumeno E, Kislyuk M, Hoederath H et al (2008) Corrosion susceptibility and nickel release of nickel titanium wires during clinical application. J Orofac Orthop 69:411–423
Sevilla P, Martorell F, Libenson C et al (2008) Laser welding of NiTi orthodontic archwires for selective force application. J Mater Sci Mater Med 19:525–529
Morawiec HZ, Lekston ZH, Kobus KF et al (2007) Superelastic NiTi springs for corrective skull operations in children with craniosynostosis. J Mater Sci Mater Med 18:1791–1798
Xu W, Frank TG, Stockham G et al (1999) Shape memory alloy fixator system for suturing tissue in minimal access surgery. Ann Biomed Eng 27:663–669
Ng Y, Shimi SM, Kernohan N et al (2006) Skin wound closure with a novel shape-memory alloy fixator. Surg Endosc 20:311–315
Singh R, Dahotre NB (2007) Corrosion degradation and prevention by surface modification of biometallic materials. J Mater Sci Mater Med 18:725–751
Wu LL, Liang HF, Cai CL et al (2005) Properties of diamond-like carbon films on Ti–Ni alloy. Biaomian Jishu 34(2):30–31
Yeung KW, Poon RW, Chu PK et al (2007) Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel–titanium alloys: a comparative study with commonly used medical grade materials. J Biomed Mater Res A 82(2):403–414
Tracana RB, Sousa JP, Carvalho GS (1994) Mouse inflammatory response to stainless steel corrosion products. Mater Sci Mater Med 5(10):596–600
Wang J, Li N, Han EH et al (2006) Effect of pH, temperature and Cl− concentration on electrochemical behavior of NiTi shape memory alloy in artificial saliva. J Mater Sci Mater Med 17(10):885–890
Wang J, Li N, Han E et al (2006) Effect of pH, temperature and Cl− concentration on electrochemical behavior of NiTi shape memory alloy in artificial saliva. J Mater Sci Mater Med 17:885–890
Eggeler G, Hornbogen E, Yawny A et al (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A 378(1–2):24–33
Hornbogen E (2004) Review: thermo-mechanical fatigue of shape memory alloys. J Mater Sci 39(2):385–399
Es-Souni M, Es-Souni M, Fischer-Brandies H (2005) Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal Bioanal Chem 381:557–567
Hunt JA, Rhodes NP, Williams DF (1995) Analysis of the inflammatory exudates surrounding implanted polymers using flow cytometry. J Mater Sci Mater Med 6:839
Liu H, Luo Y, Higa M et al (2007) Biochemical evaluation of an artificial anal sphincter made from shape memory alloys. J Artif Organs 10:223–227
Chu CL, Wang RM, Hu T, Yin LH et al (2009) XPS and biocompatibility studies of titania film on anodized NiTi shape memory alloy. J Mater Sci Mater Med 20:223–228
Chu CL (2006) Bioactive NiTi shape memory alloy fabricated by oxidizing in H2O2 solution and subsequent NaOH treatment. J Mater Sci 41:1671–1674
Chrzanowski W, Abou Neel EA, Armitage DA et al (2008) Surface preparation of bioactive Ni–Ti alloy using alkali, thermal treatments and spark oxidation. J Mater Sci Mater Med 19:1553–1557
Barrabes M, Michiardi A, Aparicio C et al (2007) Oxidized nickel–titanium foams for bone reconstructions: chemical and mechanical characterization. J Mater Sci Mater Med 18:2123–2129
Roy RK, Lee KR (2007) Biomedical applications of diamond-like carbon coatings: a review. J Biomed Mater Res B Appl Biomater 83(1):72–84
Schaefer O, Lohrmann C, Winterer J et al (2004) Endovascular treatment of superficial femoral artery occlusive disease with stents coated with diamond-like carbon. Clin Radiol 59(12):1128–1131
Linder S, Pinkowski W, Aepfelbacher M (2002) Adhesion, cytoskeletal architecture and activation status of primary human macrophages on a diamond-like carbon coated surface. Biomaterials 23(3):767–773
Kobayashi S, Ohgoe Y, Ozeki K et al (2007) Dissolution effect and cytotoxicity of diamond-like carbon coatings on orthodontic archwires. J Mater Sci Mater Med 18:2263–2268
Michiardi A, Aparicio C, Planell JA et al (2006) New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility. J Biomed Mater Res B Appl Biomater 77(2):249–256
Chu CL, Hu T, Wu SL et al (2007) Surface structure and properties of biomedical NiTi shape memory alloy after Fenton’s oxidation. Acta Biomater 3(5):795–806
Chrzanowski W, Abou Neel EA, Armitage DA et al (2008) Surface preparation of bioactive Ni–Ti alloy using alkali, thermal treatments and spark oxidation. J Mater Sci Mater Med 19(4):1553–1557
Cheng Y, Cai W, Li HT et al (2006) Surface modification of NiTi alloy with tantalum to improve its biocompatibility and radiopacity. J Mater Sci 41:4961–4964
Heng Y, Cai W, Li HT et al (2006) Surface modification of NiTi alloy with tantalum to improve its biocompatibility and radiopacity. J Mater Sci 41(15):4961–4964
Boccaccini AR, Peters C, Roether JA et al (2006) Electrophoretic deposition of polyetheretherketone (PEEK) and PEEK/bioglass coatings on NiTi shape memory alloy wires. J Mater Sci 41:8152–8159
Li C-Y, Chen M-F, Qiang W (2006) Study on the biomimetic HA formation on NiTi implant and its biological response. Chin J Biomed Eng 25(3):355–358
Burke M, Clarke B, Rochev Y et al (2008) Estimation of the strength of adhesion between a thermoresponsive polymer coating and nitinol wire. J Mater Sci Mater Med 19:1971–1979
Alves-Claro APR, Claro FAE, Uzumaki ET (2008) Wear resistance of nickel–titanium endodontic files after surface treatment. J Mater Sci Mater Med 19:3273–3277
Samaroo HD, Lu J, Webster TJ (2008) Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness. Int J Nanomedicine 3(1):75–82
Liu XM, Wu SL, Chan YL et al (2007) Surface characteristics, biocompatibility, and mechanical properties of nickel–titanium plasma-implanted with nitrogen at different implantation voltages. J Biomed Mater Res A 82(2):469–478
Li UM, Iijima M, Endo K et al (2007) Application of plasma immersion ion implantation for surface modification of nickel–titanium rotary instruments. Dent Mater J 26(4):467–473
Yanga H, Qiana L, Zhou Z et al (2007) Effect of surface treatment by ceramic conversion on the fretting behavior of NiTi shape memory alloy. Tribol Lett 25(3):215–224
Chu CL, Lin PH (2005) Characterization of transformation behavior in porous Ni-rich NiTi shape memory alloy fabricated by combustion synthesis. J Mater Sci 40:773–776
Rhalmi S, Charette S, Assad M et al (2007) The spinal cord dura mater reaction to nitinol and titanium alloy particles: a 1-year study in rabbits. Eur Spine J 16:1063–1072
Liang CY, Yang Y, Wang HS et al (2008) Preparation of porous microstructures on NiTi alloy surface with femtosecond laser pulses. Chin Sci Bull 53(5):700–705
Likibi F, Assad M, Coillard C et al (2005) Influence of biomaterial structure and hardness on its osseo-integration: histomorphometric evaluation of porous nitinol and titanium implants. Eur J Orthop Surg Traumatol 15:257–263
Likibi F, Assad M, Jarzem P (2004) Osseointegration study of porous nitinol versus titanium orthopaedic implants. Eur J Orthop Surg Traumatol 14:209–213
Li B, Rong L, Li Y (1999) Microstructure and superelasticity of porous NiTi alloy. Sci China Ser E 42(1):94–99
Nie Q, Ji ZY, Lin JX (2007) Surface nanostructures orienting self-protection of an orthodontic nickel–titanium shape memory alloys wire. Chin Sci Bull 52(21):3020–3023
Goryczka T, Lelatko J, Ochin P (2008) Nanocrystalline platinum layer deposited on NiTiCu shape memory strip. Eur Phys J Spec Top 158:33–38
Prasad RVS, Phanikumar G (2009) Amorphous and nano crystalline phase formation in Ni2MnGa ferromagnetic shape memory alloy synthesized by melt spinning. J Mater Sci 44:2553–2559
Chernenko VA, Oikawa K, Chmielus M, Besseghini S et al (2009) Properties of Co-alloyed Ni–Fe–Ga ferromagnetic shape memory alloys. JMEPEG 18:548–553
Bujoreanu LG, Stanciu S et al (2009) Factors influencing the reversion of stress-induced martensite to austenite in a Fe–Mn–Si–Cr–Ni shape memory alloy. JMEPEG 18:500–505
Liu H, Liu X-j (2007) Corrosion resistance and biocompatibility of FeMnSiCr shape memory alloy. Corros Sci Prot Technol 19(4):293–295