The application of purple non-sulfur bacteria for microbial mixed culture polyhydroxyalkanoates production

Springer Science and Business Media LLC - Tập 20 Số 4 - Trang 959-983 - 2021
Safae Sali1, Hamish R. Mackey1
1Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adessi A, De Philippis R (2014) Photobioreactor design and illumination systems for H2 production with anoxygenic photosynthetic bacteria: a review. Int J Hydrog Energy 39:3127–3141. https://doi.org/10.1016/j.ijhydene.2013.12.084

Ahn WS, Park SJ, Lee SY (2000) Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl Environ Microbiol 66:3624–3627. https://doi.org/10.1128/AEM.66.8.3624-3627.2000

Akiyama M, Taima Y, Doi Y (1992) Production of poly(3-hydroxyalkanoates) by a bacterium of the genus Alcaligenes utilizing long-chain fatty acids. Appl Microbiol Biotechnol 37:698–701. https://doi.org/10.1007/BF00174830

Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. BIOHYDROGEN 2002 27:1195–1208. https://doi.org/10.1016/S0360-3199(02)00071-X

Albuquerque MGE, Concas S, Bengtsson S, Reis MAM (2010) Mixed culture polyhydroxyalkanoates production from sugar molasses: the use of a 2-stage CSTR system for culture selection. Bioresour Technol 101:7112–7122. https://doi.org/10.1016/j.biortech.2010.04.019

Albuquerque MGE, Torres CAV, Reis MAM (2010) Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: effect of the influent substrate concentration on culture selection. Water Res 44:3419–3433. https://doi.org/10.1016/j.watres.2010.03.021

Ali Hassan M, Shirai Y, Kusubayashi N et al (1996) Effect of organic acid profiles during anaerobic treatment of palm oil mill effluent on the production of polyhydroxyalkanoates by Rhodobacter sphaeroides. J Ferment Bioeng 82:151–156. https://doi.org/10.1016/0922-338X(96)85038-0

Ali Hassan M, Shirai Y, Kusubayashi N et al (1997) The production of polyhydroxyalkanoate from anaerobically treated palm oil mill effluent by Rhodobacter sphaeroides. J Ferment Bioeng 83:485–488. https://doi.org/10.1016/S0922-338X(97)83007-3

Allegue LD, Puyol D, Melero JA (2020) Food waste valorization by purple phototrophic bacteria and anaerobic digestion after thermal hydrolysis. Biomass Bioenergy 142:105803. https://doi.org/10.1016/j.biombioe.2020.105803

Alloul A, Wuyts S, Lebeer S, Vlaeminck SE (2019) Volatile fatty acids impacting phototrophic growth kinetics of purple bacteria: Paving the way for protein production on fermented wastewater. Water Res 152:138–147. https://doi.org/10.1016/j.watres.2018.12.025

Almeida JR, Serrano E, Fernandez M et al (2021) Polyhydroxyalkanoates production from fermented domestic wastewater using phototrophic mixed cultures. Water Res 197:117101. https://doi.org/10.1016/j.watres.2021.117101

Amulya K, Reddy MV, Rohit MV, Mohan SV (2016) Wastewater as renewable feedstock for bioplastics production: understanding the role of reactor microenvironment and system pH. J Clean Prod 112:4618–4627. https://doi.org/10.1016/j.jclepro.2015.08.009

Anis SNS, Md Iqbal N, Kumar S, Amirul A-A (2013) Effect of different recovery strategies of P(3HB-co-3HHx) copolymer from Cupriavidus necator recombinant harboring the PHA synthase of Chromobacterium sp. USM2. Sep Purif Technol 102:111–117. https://doi.org/10.1016/j.seppur.2012.09.036

Basak B, Ince O, Artan N et al (2011) Effect of nitrogen limitation on enrichment of activated sludge for PHA production. Bioprocess Biosyst Eng 34:1007–1016. https://doi.org/10.1007/s00449-011-0551-x

Basset N, Katsou E, Frison N et al (2016) Integrating the selection of PHA storing biomass and nitrogen removal via nitrite in the main wastewater treatment line. Bioresour Technol 200:820–829. https://doi.org/10.1016/j.biortech.2015.10.063

Bertling K, Hurse TJ, Kappler U, Rakić AD (2006) Lasers—an effective artificial source of radiation for the cultivation of anoxygenic photosynthetic bacteria. Biotechnol Bioeng 94:337–345. https://doi.org/10.1002/bit.20881

Blunt W, Levin DB, Cicek N (2018) Bioreactor operating strategies for improved polyhydroxyalkanoate (PHA) productivity. Polymers 10:1197. https://doi.org/10.3390/polym10111197

Boran E, Özgür E, van der Burg J et al (2010) Biological hydrogen production by Rhodobacter capsulatus in solar tubular photo bioreactor. J Clean Prod 18:S29–S35. https://doi.org/10.1016/j.jclepro.2010.03.018

Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of poly(beta-Hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54:1977–1982. https://doi.org/10.1128/aem.54.8.1977-1982.1988

Brandl H, Knee EJ, Fuller RC et al (1989) Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly (β-hydroxyalkanoates): potential sources for biodegradable polyesters. Int J Biol Macromol 11:49–55. https://doi.org/10.1016/0141-8130(89)90040-8

Brandl H, Gross RA, Lenz RW, Fuller RC (1990) Plastics from bacteria and for bacteria: poly(β-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. Adv Biochem Eng Biotechnol 41:77–93. https://doi.org/10.1007/BFb0010232

Brandl H, Gross RA, Lenz RW et al (1991) The accumulation of poly(3-hydroxyalkanoates) in Rhodobacter sphaeroides. Arch Microbiol 155:337–340. https://doi.org/10.1007/BF00243452

Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808. https://doi.org/10.3144/expresspolymlett.2014.82

Capson-Tojo G, Batstone DJ, Grassino M et al (2020) Purple phototrophic bacteria for resource recovery: challenges and opportunities. Biotechnol Adv 43:107567. https://doi.org/10.1016/j.biotechadv.2020.107567

Cardeña R, Valdez-Vazquez I, Buitrón G (2017) Effect of volatile fatty acids mixtures on the simultaneous photofermentative production of hydrogen and polyhydroxybutyrate. Bioprocess Biosyst Eng 40:231–239. https://doi.org/10.1007/s00449-016-1691-9

Carlozzi P, Sacchi A (2001) Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled, underwater tubular photobioreactor. J Biotechnol 88:239–249. https://doi.org/10.1016/S0168-1656(01)00280-2

Carlozzi P, Lambardi M (2009) Fed-batch operation for bio-H2 production by Rhodopseudomonas palustris (strain 42OL). Renew Energy 34:2577–2584. https://doi.org/10.1016/j.renene.2009.04.016

Carlozzi P, Seggiani M, Cinelli P et al (2018) Photofermentative poly-3-hydroxybutyrate production by Rhodopseudomonas sp. S16-VOGS3 in a novel outdoor 70-L photobioreactor. Sustainability 10:3133. https://doi.org/10.3390/su10093133

Carlozzi P, Giovannelli A, Traversi ML et al (2019a) Poly-3-hydroxybutyrate and H2 production by Rhodopseudomonas sp. S16-VOGS3 grown in a new generation photobioreactor under single or combined nutrient deficiency. Int J Biol Macromol 135:821–828. https://doi.org/10.1016/j.ijbiomac.2019.05.220

Carlozzi P, Touloupakis E, Di Lorenzo T et al (2019b) Whey and molasses as inexpensive raw materials for parallel production of biohydrogen and polyesters via a two-stage bioprocess: new routes towards a circular bioeconomy. J Biotechnol 303:37–45. https://doi.org/10.1016/j.jbiotec.2019.07.008

Castilho LR, Mitchell DA, Freire DMG (2009) Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour Technol 100:5996–6009. https://doi.org/10.1016/j.biortech.2009.03.088

Cerruti M, Stevens B, Ebrahimi S et al (2020) Enrichment and aggregation of purple non-sulfur bacteria in a mixed-culture sequencing-batch photobioreactor for biological nutrient removal from wastewater. Front Bioeng Biotechnol 8:1432. https://doi.org/10.3389/fbioe.2020.557234

Chayabutra C, Ju LK (2001) Polyhydroxyalkanoic acids and rhamnolipids are synthesized sequentially in hexadecane fermentation by Pseudomonas aeruginosa ATCC 10145. Biotechnol Prog 17:419–423. https://doi.org/10.1021/bp010036a

Cheah Y-K, Vidal-Antich C, Dosta J, Mata-Álvarez J (2019) Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Environ Sci Pollut Res 26:35509–35522. https://doi.org/10.1007/s11356-019-05394-6

Chee J, Yoga S, Lau N et al (2010) Bacterially produced polyhydroxyalkanoates (PHA): Converting renewable resources into bioplastics. In: Mendez-Vilas A (ed) Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Formatex Research Center, Spain, pp 1395–1404

Chen Y-T, Wu S-C, Lee C-M (2012) Relationship between cell growth, hydrogen production and poly-β-hydroxybutyrate (PHB) accumulation by Rhodopseudomonas palustris WP3-5. ICCE-2011 37:13887–13894. https://doi.org/10.1016/j.ijhydene.2012.06.024

Chen Z, Huang L, Wen Q, Guo Z (2015) Efficient polyhydroxyalkanoate (PHA) accumulation by a new continuous feeding mode in three-stage mixed microbial culture (MMC) PHA production process. J Biotechnol 209:68–75. https://doi.org/10.1016/j.jbiotec.2015.06.382

Chen Y, Jiang X, Xiao K et al (2017) Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase – investigation on dissolved organic matter transformation and microbial community shift. Water Res 112:261–268. https://doi.org/10.1016/j.watres.2017.01.067

Choi J, Lee SY (1999) Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 51:13–21. https://doi.org/10.1007/s002530051357

Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702. https://doi.org/10.1016/j.biotechadv.2011.05.015

Corneli E, Adessi A, Dragoni F et al (2016) Agroindustrial residues and energy crops for the production of hydrogen and poly-β-hydroxybutyrate via photofermentation. Bioresour Technol 216:941–947. https://doi.org/10.1016/j.biortech.2016.06.046

De Philippis R, Ena A, Guastini M et al (1992) Factors affecting poly-β-hydroxybutyrate accumulation in cyanobacteria and in purple non-sulfur bacteria. FEMS Microbiol Rev 9:187–194. https://doi.org/10.1111/j.1574-6968.1992.tb05837.x

Dietrich K, Dumont M-J, Del Rio LF, Orsat V (2017) Producing PHAs in the bioeconomy—towards a sustainable bioplastic. Sustain Prod Consump 9:58–70. https://doi.org/10.1016/j.spc.2016.09.001

Erb TJ, Berg IA, Brecht V et al (2007) Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway. Proc Natl Acad Sci 104:10631. https://doi.org/10.1073/pnas.0702791104

Favinger J, Stadtwald R, Gest H (1989) Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. Antonie Van Leeuwenhoek 55:291–296. https://doi.org/10.1007/BF00393857

Fradinho JC, Domingos JMB, Carvalho G et al (2013a) Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae. Bioresour Technol 132:146–153. https://doi.org/10.1016/j.biortech.2013.01.050

Fradinho JC, Oehmen A, Reis MAM (2013b) Effect of dark/light periods on the polyhydroxyalkanoate production of a photosynthetic mixed culture. Bioresour Technol 148:474–479. https://doi.org/10.1016/j.biortech.2013.09.010

Fradinho JC, Oehmen A, Reis MAM (2014) Photosynthetic mixed culture polyhydroxyalkanoate (PHA) production from individual and mixed volatile fatty acids (VFAs): substrate preferences and co-substrate uptake. J Biotechnol 185:19–27. https://doi.org/10.1016/j.jbiotec.2014.05.035

Fradinho JC, Reis MAM, Oehmen A (2016) Beyond feast and famine: selecting a PHA accumulating photosynthetic mixed culture in a permanent feast regime. Water Res 105:421–428. https://doi.org/10.1016/j.watres.2016.09.022

Fradinho JC, Oehmen A, Reis MAM (2019) Improving polyhydroxyalkanoates production in phototrophic mixed cultures by optimizing accumulator reactor operating conditions. Int J Biol Macromol 126:1085–1092. https://doi.org/10.1016/j.ijbiomac.2018.12.270

García D, de Godos I, Domínguez C et al (2019) A systematic comparison of the potential of microalgae-bacteria and purple phototrophic bacteria consortia for the treatment of piggery wastewater. Bioresour Technol 276:18–27. https://doi.org/10.1016/j.biortech.2018.12.095

Gebicki J, Modigell M, Schumacher M et al (2009) Development of photobbioreactors for anoxygenic production of hydrogen by purple bacteria. Chem Eng Trans 18:363–368. https://doi.org/10.3303/CET0918058

Ghimire A, Valentino S, Frunzo L et al (2015) Biohydrogen production from food waste by coupling semi-continuous dark-photofermentation and residue post-treatment to anaerobic digestion: a synergy for energy recovery. Int J Hydrog Energy 40:16045–16055. https://doi.org/10.1016/j.ijhydene.2015.09.117

Ghimire A, Valentino S, Frunzo L et al (2016) Concomitant biohydrogen and poly-β-hydroxybutyrate production from dark fermentation effluents by adapted Rhodobacter sphaeroides and mixed photofermentative cultures. Spec Issue Bioenergy Bioprod Environ Sustain 217:157–164. https://doi.org/10.1016/j.biortech.2016.03.017

Ghosh S, Dairkee UK, Chowdhury R, Bhattacharya P (2017) Hydrogen from food processing wastes via photofermentation using Purple Non-sulfur Bacteria (PNSB)–a review. Energy Convers Manag 141:299–314. https://doi.org/10.1016/j.enconman.2016.09.001

Guerra-Blanco P, Cortes O, Poznyak T et al (2018) Polyhydroxyalkanoates (PHA) production by photoheterotrophic microbial consortia: effect of culture conditions over microbial population and biopolymer yield and composition. Eur Polym J 98:94–104. https://doi.org/10.1016/j.eurpolymj.2017.11.007

Hanada S (2016) Anoxygenic photosynthesis - a photochemical reaction that does not contribute to oxygen reproduction. Microbes Env 31:1–3. https://doi.org/10.1264/jsme2.ME3101rh

Heinrich D, Raberg M, Fricke P et al (2016) Synthesis gas (Syngas)-derived medium-chain-length polyhydroxyalkanoate synthesis in engineered Rhodospirillum rubrum. Appl Environ Microbiol 82:6132–6140. https://doi.org/10.1128/AEM.01744-16

Higuchi-Takeuchi M, Numata K (2019) Acetate-inducing metabolic states enhance polyhydroxyalkanoate production in marine purple non-sulfur bacteria under aerobic conditions. Front Bioeng Biotechnol 7:118. https://doi.org/10.3389/fbioe.2019.00118

Higuchi-Takeuchi M, Morisaki K, Numata K (2016a) A screening method for the isolation of polyhydroxyalkanoate-producing purple non-sulfur photosynthetic bacteria from natural seawater. Front Microbiol 7:1509. https://doi.org/10.3389/fmicb.2016.01509

Higuchi-Takeuchi M, Morisaki K, Toyooka K, Numata K (2016b) Synthesis of high-molecular-weight polyhydroxyalkanoates by marine photosynthetic purple bacteria. Plos One 11:e0160981. https://doi.org/10.1371/journal.pone.0160981

Hülsen T, Batstone DJ, Keller J (2014) Phototrophic bacteria for nutrient recovery from domestic wastewater. Water Res 50:18–26. https://doi.org/10.1016/j.watres.2013.10.051

Hustede E, Steinbüchel A, Schlegel HG (1993) Relationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulphur purple bacteria. Appl Microbiol Biotechnol 39:87–93. https://doi.org/10.1007/BF00166854

Imhoff JF (2017) Anoxygenic phototrophic bacteria from extreme environments. In: Hallenbeck PC (ed) Modern topics in the phototrophic prokaryotes: environmental and applied aspects. Springer International Publishing, Switzerland, pp 427–480

Imhoff JF (2017) Diversity of anaerobic anoxygenic phototrophic purple bacteria. In: Hallenbeck PC (ed) Modern topics in the phototrophic prokaryotes: environmental and applied aspects. Springer International Publishing, Switzerland, pp 47–85

Imhoff JF, Hiraishi A, Suling J (2005) Anoxygenic phototrophic purple bacteria. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Springer, Boston, pp 119–132

Ismail KSK, Najafpour G, Younesi H et al (2008) Biological hydrogen production from CO: bioreactor performance. Biochem Eng J 39:468–477. https://doi.org/10.1016/j.bej.2007.11.003

Jiang G, Hill DJ, Kowalczuk M et al (2016) Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Mol Sci 17:1157. doi:https://doi.org/10.3390/ijms17071157. https://doi.org/10.3390/ijms17071157

Kanekar PP, Kanekar SP, Kelkar AS, Dhakephalkar PK (2012) Halophiles – Taxonomy, diversity, physiology and applications. In: Satyanarayana T, Johri B, Anil P (eds) Microorganisms in environmental management. Springer, Dordrecht, pp 1–34

Kantachote D, Torpee S, Umsakul K (2005) The potential use of anoxygenic phototrophic bacteria for treating latex rubber sheet wastewater. Electron J Biotechnol. https://doi.org/10.4067/S0717-34582005000300012

Kapdan IK, Kargi F, Oztekin R, Argun H (2009) Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. Int J Hydrog Energy 34:2201–2207. https://doi.org/10.1016/j.ijhydene.2009.01.017

Kars G, Ceylan A (2013) Biohydrogen and 5-aminolevulinic acid production from waste barley by Rhodobacter sphaeroides O.U.001 in a biorefinery concept. Int J Hydrog Energy 38:5573–5579. https://doi.org/10.1016/j.ijhydene.2013.03.013

Kars G, Gündüz U (2010) Towards a super H2 producer: Improvements in photofermentative biohydrogen production by genetic manipulations. ISMF-09 35:6646–6656. https://doi.org/10.1016/j.ijhydene.2010.04.037

Khatipov E, Miyake M, Miyake J, Asada Y (1998a) Polyhydroxybutyrate accumulation and hydrogen evolution by Rhodobacter sphaeroides as a function of nitrogen availability. In: Zaborsky OR, Benemann JR, Matsunaga T et al (eds) BioHydrogen. Springer, Boston, pp 157–161

Khatipov E, Miyake M, Miyake J, Asada Y (1998) Accumulation of poly-β-hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrates. FEMS Microbiol Lett 162:39–45. https://doi.org/10.1111/j.1574-6968.1998.tb12976.x

Kim M-S, Kim D-H, Son H-N et al (2011) Enhancing photo-fermentative hydrogen production by Rhodobacter sphaeroides KD131 and its PHB synthase deleted-mutant from acetate and butyrate. 2010 AsianAPEC BioH2 36:13964–13971. https://doi.org/10.1016/j.ijhydene.2011.03.099

Kim M-S, Kim D-H, Cha J, Lee JK (2012) Effect of carbon and nitrogen sources on photo-fermentative H2 production associated with nitrogenase, uptake hydrogenase activity, and PHB accumulation in Rhodobacter sphaeroides KD131. Bioresour Technol 116:179–183. https://doi.org/10.1016/j.biortech.2012.04.011

Kniewel R, Lopez OR, Prieto MA (2019) Biogenesis of medium-chain-length polyhydroxyalkanoates. In: Geiger O (ed) Biogenesis of fatty acids, lipids and membranes. Springer International Publishing, Cham, pp 457–481

Koller M, Braunegg G (2018) Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. Eurobiotech J 2:89–103. https://doi.org/10.2478/ebtj-2018-0013

Kompantseva EI, Komova AV, Sorokin DY (2010) Communities of anoxygenic phototrophic bacteria in the saline soda lakes of the Kulunda steppe (Altai Krai). Microbiol 79:89–95. https://doi.org/10.1134/S0026261710010121

Kumar BV, Ramprasad EVV, Sasikala C, Ramana CV (2013) Rhodopseudomonas pentothenatexigens sp. nov. and Rhodopseudomonas thermotolerans sp. nov., isolated from paddy soils. Int J Syst Evol Microbiol 63:200–207. https://doi.org/10.1099/ijs.0.038620-0

Lai Y-C, Liang C-M, Hsu S-C et al (2017) Polyphosphate metabolism by purple non-sulfur bacteria and its possible application on photo-microbial fuel cell. J Biosci Bioeng 123:722–730. https://doi.org/10.1016/j.jbiosc.2017.01.012

Laurinavichene T, Tekucheva D, Laurinavichius K, Tsygankov A (2018) Utilization of distillery wastewater for hydrogen production in one-stage and two-stage processes involving photofermentation. Enzyme Microb Technol 110:1–7. https://doi.org/10.1016/j.enzmictec.2017.11.009

Liebergesell M, Hustede E, Timm A et al (1991) Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria. Arch Microbiol 155:415–421. https://doi.org/10.1007/BF00244955

Luongo V, Ghimire A, Frunzo L et al (2017) Photofermentative production of hydrogen and poly-β-hydroxybutyrate from dark fermentation products. Bioresour Technol 228:171–175. https://doi.org/10.1016/j.biortech.2016.12.079

Mack EE, Mandelco L, Woese CR, Madigan MT (1993) Rhodospirillum sodomense, sp. nov., a Dead Sea rhodospirillum species. Arch Microbiol 160:363–371. https://doi.org/10.1007/BF00252222

Madigan MT, Jung DO (2009) An overview of purple bacteria: systematics, physiology, and habitats. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Advances in photosynthesis and respiration, vol 28. Springer, Dordrecht

Marang L, van Loosdrecht MCM, Kleerebezem R (2018) Enrichment of PHA-producing bacteria under continuous substrate supply. N Biotechnol 41:55–61. https://doi.org/10.1016/j.nbt.2017.12.001

Melnicki MR, Eroglu E, Melis A (2009) Changes in hydrogen production and polymer accumulation upon sulfur-deprivation in purple photosynthetic bacteria. Int J Hydrog Energy 34:6157–6170. https://doi.org/10.1016/j.ijhydene.2009.05.115

Merugu R, Rudra M, Girisham S, Reddy SM (2012) Biotechnological applications of purple non sulphur phototrophic bacteria: a minireview. Int J App Biol Pharm 3:376–384

Molina Grima E, Belarbi E-H, Acién Fernández FG et al (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515. https://doi.org/10.1016/S0734-9750(02)00050-2

Montano-Herrera L, Laycock B, Werker A, Pratt S (2017) The evolution of polymer composition during PHA accumulation: the significance of reducing equivalents. Bioengineering 4:20. https://doi.org/10.3390/bioengineering4010020

Montiel-Corona V, Buitrón G (2021) Polyhydroxyalkanoates from organic waste streams using purple non-sulfur bacteria. Bioresour Technol 323:124610. https://doi.org/10.1016/j.biortech.2020.124610

Montiel-Corona V, Revah S, Morales M (2015) Hydrogen production by an enriched photoheterotrophic culture using dark fermentation effluent as substrate: effect of flushing method, bicarbonate addition, and outdoor–indoor conditions. Int J Hydrog Energy 40:9096–9105. https://doi.org/10.1016/j.ijhydene.2015.05.067

Montiel Corona V, Le Borgne S, Revah S, Morales M (2017) Effect of light-dark cycles on hydrogen and poly-β-hydroxybutyrate production by a photoheterotrophic culture and Rhodobacter capsulatus using a dark fermentation effluent as substrate. Bioresour Technol 226:238–246. https://doi.org/10.1016/j.biortech.2016.12.021

Możejko-Ciesielska J, Kiewisz R (2016) Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res 192:271–282. https://doi.org/10.1016/j.micres.2016.07.010

Muhr A, Rechberger EM, Salerno A et al (2013) Biodegradable latexes from animal-derived waste: biosynthesis and characterization of mcl-PHA accumulated by Ps. citronellolis. Renew Polym Multifunct Mater Prop Process Appl 73:1391–1398. https://doi.org/10.1016/j.reactfunctpolym.2012.12.009

Mukhopadhyay M, Patra A, Paul AK (2013) Phototrophic growth and accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by purple nonsulfur bacterium Rhodopseudomonas palustris SP5212. J Polym 2013:523941. https://doi.org/10.1155/2013/523941

Mukhopadhyay M, Patra A, Paul AK (2005) Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Rhodopseudomonas palustris SP5212. World J Microbiol Biotechnol 21:765–769. https://doi.org/10.1007/s11274-004-5565-y

Namsaraev ZB, Gorlenko VM, Namsaraev BB et al (2003) The structure and biogeochemical activity of the phototrophic communities from the Bol’sherechenskii alkaline hot spring. Mikrobiologiia 72:193–203. https://doi.org/10.1023/A:1023272131859

Ni Y-Y, Kim DY, Chung MG et al (2010) Biosynthesis of medium-chain-length poly(3-hydroxyalkanoates) by volatile aromatic hydrocarbons-degrading Pseudomonas fulva TY16. Bioresour Technol 101:8485–8488. https://doi.org/10.1016/j.biortech.2010.06.033

Ohashi S, Iemura T, Okada N et al (2010) An overview on chlorophylls and quinones in the photosystem I-type reaction centers. Photosynth Res 104:305–319. https://doi.org/10.1007/s11120-010-9530-3

Olson JM (2013) Green bacteria: the light-harvesting chlorosome. In: Lennarz WJ, Lane MD (eds) Encyclopedia of biological chemistry (Second Edition). Academic Press, Waltham, pp 513–516

Özsoy Demiriz B, Kars G, Yücel M et al (2019) Hydrogen and poly-β-hydroxybutyric acid production at various acetate concentrations using Rhodobacter capsulatus DSM 1710. Int J Hydrog Energy 44:17269–17277. https://doi.org/10.1016/j.ijhydene.2019.02.036

Padovani G, Carlozzi P, Seggiani M et al (2016) PHB-rich biomass and BioH2 production by means of photosynthetic microorganisms. Chem Eng Trans 49:55–60. https://doi.org/10.3303/CET1649010

Padovani G, Emiliani G, Giovanelli A et al (2018) Assessment of glycerol usage by five different purple non-sulfur bacterial strains for bioplastic production. J Env Chem Eng 6:616–622. https://doi.org/10.1016/j.jece.2017.12.050

Pagliano G, Ventorino V, Panico A, Pepe O (2017) Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes. Biotechnol Biofuels 10:113. https://doi.org/10.1186/s13068-017-0802-4

Pattanamanee W, Choorit W, Deesan C et al (2012) Photofermentive production of biohydrogen from oil palm waste hydrolysate. Int J Hydrog Energy 37:4077–4087. https://doi.org/10.1016/j.ijhydene.2011.12.002

Petushkova E, Iuzhakov S, Tsygankov A (2019) Differences in possible TCA cycle replenishing pathways in purple non-sulfur bacteria possessing glyoxylate pathway. Photosynth Res 139:523–537. https://doi.org/10.1007/s11120-018-0581-1

Pfennig N (1969) Rhodopseudomonas acidophila, sp. n., a new species of the budding purple nonsulfur bacteria. J Bacteriol 99:597–602

Pfennig N (1974) Rhodopseudomonas globiformis, sp. n., a new species of the Rhodospirillaceae. Arch Microbiol 100:197–206. https://doi.org/10.1007/BF00446317

Pfennig N, Lünsdorf H, Süling J, Imhoff JF (1997) Rhodospira trueperi gen. nov., spec. nov., a new phototrophic Proteobacterium of the alpha group. Arch Microbiol 168:39–45. https://doi.org/10.1007/s002030050467

Podola B, Li T, Melkonian M (2017) Porous substrate bioreactors: a paradigm shift in microalgal biotechnology? Trends Biotechnol 35:121–132. https://doi.org/10.1016/j.tibtech.2016.06.004

Policastro G, Luongo V, Fabbricino M (2020) Biohydrogen and poly-β-hydroxybutyrate production by winery wastewater photofermentation: effect of substrate concentration and nitrogen source. J Environ Manag 271:111006. https://doi.org/10.1016/j.jenvman.2020.111006

Povolo S, Romanelli MG, Basaglia M et al (2013) Polyhydroxyalkanoate biosynthesis by Hydrogenophaga pseudoflava DSM1034 from structurally unrelated carbon sources. Biotechnol Bio Green Econ 30:629–634. https://doi.org/10.1016/j.nbt.2012.11.019

Prasertsan P, Choorit W, Suwanno S (1993) Optimization for growth of Rhodocyclus gelatinosus in seafood processing effluents. World J Microbiol Biotechnol 9:593–596. https://doi.org/10.1007/BF00386302

Qi X, Ren Y, Tian E, Wang X (2017) The exploration of monochromatic near-infrared LED improved anoxygenic photosynthetic bacteria Rhodopseudomonas sp. for wastewater treatment. Bioresour Technol 241:620–626. https://doi.org/10.1016/j.biortech.2017.05.202

Ramana CV, Sasikala C, Arunasri K et al (2006) Rubrivivax benzoatilyticus sp. nov., an aromatic, hydrocarbon-degrading purple betaproteobacterium. Int J Syst Evol Microbiol 56:2157–2164. https://doi.org/10.1099/ijs.0.64209-0

Ranaivoarisoa TO, Singh R, Rengasamy K et al (2019) Towards sustainable bioplastic production using the photoautotrophic bacterium Rhodopseudomonas palustris TIE-1. J Ind Microbiol Biotechnol 46:1401–1417. https://doi.org/10.1007/s10295-019-02165-7

Rigouin C, Lajus S, Ocando C et al (2019) Production and characterization of two medium-chain-length polydroxyalkanoates by engineered strains of Yarrowia lipolytica. Microb Cell 18:99. https://doi.org/10.1186/s12934-019-1140-y

Sali S, Mackey HR (2021) Integration of polyhydroxyalkanoates production with industrial wastewater treatment. In: Gothandam KM, Ranjan S, Dasgupta N, Lichtfouse E (eds) Environmental biotechnology, vol 3. Springer, Switzerland

Samorì C, Abbondanzi F, Galletti P et al (2015) Extraction of polyhydroxyalkanoates from mixed microbial cultures: impact on polymer quality and recovery. Bioresour Technol 189:195–202. https://doi.org/10.1016/j.biortech.2015.03.062

Sathya A, Velmurugan S, Arockiasamy S et al (2018) Production of polyhydroxyalkanoates from renewable sources using bacteria. J Polym Environ 26:3995–4012. https://doi.org/10.1007/s10924-018-1259-7

Serafim LS, Lemos PC, Albuquerque MGE, Reis MAM (2008) Strategies for PHA production by mixed cultures and renewable waste materials. Appl Microbiol Biotechnol 81:615–628. https://doi.org/10.1007/s00253-008-1757-y

Serôdio J, Vieira S, Cruz S (2008) Photosynthetic activity, photoprotection and photoinhibition in intertidal microphytobenthos as studied in situ using variable chlorophyll fluorescence. Cont Shelf Res 28:1363–1375. https://doi.org/10.1016/j.csr.2008.03.019

Shahid S, Mosrati R, Ledauphin J et al (2013) Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: Evidence of an atypical metabolism in Bacillus megaterium DSM 509. J Biosci Bioeng 116:302–308. https://doi.org/10.1016/j.jbiosc.2013.02.017

Sharma PK, Munir RI, Blunt W et al (2017) Synthesis and physical properties of polyhydroxyalkanoate polymers with different monomer compositions by recombinant Pseudomonas putida LS46 expressing a novel PHA SYNTHASE (PhaC116) enzyme. Appl Sci 7:242. https://doi.org/10.3390/app7030242

Sheu D-S, Chen W-M, Yang J-Y, Chang R-C (2009) Thermophilic bacterium Caldimonas taiwanensis produces poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from starch and valerate as carbon sources. Enzyme Microb Technol 44:289–294. https://doi.org/10.1016/j.enzmictec.2009.01.004

Suk AW, Jae PS, Yup LS (2000) Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl Environ Microbiol 66:3624–3627. https://doi.org/10.1128/AEM.66.8.3624-3627.2000

Suzuki T, Tsygankov AA, Miyake J et al (1995) Accumulation of poly-(hydroxybutyrate) by a non-sulfur photosynthetic bacterium, Rhodobacter sphaeroides RV at different pH. Biotechnol Lett 17:395–400. https://doi.org/10.1007/BF00130796

Talaiekhozani A, Rezania S (2017) Application of photosynthetic bacteria for removal of heavy metals, macro-pollutants and dye from wastewater: a review. J Water Process Eng 19:312–321. https://doi.org/10.1016/j.jwpe.2017.09.004

Tamang P, Banerjee R, Köster S, Nogueira R (2019) Comparative study of polyhydroxyalkanoates production from acidified and anaerobically treated brewery wastewater using enriched mixed microbial culture. J Environ Sci 78:137–146. https://doi.org/10.1016/j.jes.2018.09.001

Tan G-YA, Chen C-L, Li L et al (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers. https://doi.org/10.3390/polym6030706

Tanskul S, Srisai S, Nualla-Ong A (2016) A purple non-sulfur bacterium producing polyhydroxybutyrate and the conserved region of PHA synthase gene. Biosci J 32:1341–1351. https://doi.org/10.14393/BJ-v32n1a2016-33801

Tufail S, Munir S, Jamil N (2017) Variation analysis of bacterial polyhydroxyalkanoates production using saturated and unsaturated hydrocarbons. Braz J Microbiol 48:629–636. https://doi.org/10.1016/j.bjm.2017.02.008

Urtuvia V, Villegas P, González M, Seeger M (2014) Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int J Biol Macromol 70:208–213. https://doi.org/10.1016/j.ijbiomac.2014.06.001

Uyar B, Eroglu I, Yücel M et al (2007) Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. Int J Hydrog Energy 32:4670–4677. https://doi.org/10.1016/j.ijhydene.2007.07.002

Vandi LJ, Chan CM, Werker A et al (2018) Wood-PHA composites: Mapping opportunities. Polymers 10:751. https://doi.org/10.3390/polym10070751

Verlinden RAJ, Hill DJ, Kenward MA et al (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449. https://doi.org/10.1111/j.1365-2672.2007.03335.x

Villano M, Valentino F, Barbetta A et al (2014) Polyhydroxyalkanoates production with mixed microbial cultures: from culture selection to polymer recovery in a high-rate continuous process. N Biotechnol 31:289–296. https://doi.org/10.1016/j.nbt.2013.08.001

Vincenzini M, Marchini A, Ena A, De Philippis R (1997) H2 and poly-β-hydroxybutyrate, two alternative chemicals from purple non sulfur bacteria. Biotechnol Lett 19:759–762. https://doi.org/10.1023/A:1018336209252

Voinova O, Gladyshev M, Volova TG (2008) Comparative study of PHA degradation in natural reservoirs having various types of ecosystems. Macromol Symp 269:34–37. https://doi.org/10.1002/masy.200850906

Wang F, Lee SY (1997) Poly(3-hydroxybutyrate) production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation. Appl Env Microbiol 63:3703–3706. https://doi.org/10.1128/aem.63.9.3703-3706.1997

Wang H, Zhang G, Peng M et al (2016) Synthetic white spirit wastewater treatment and biomass recovery by photosynthetic bacteria: Feasibility and process influence factors. Int Biodeterior Biodegrad 113:134–138. https://doi.org/10.1016/j.ibiod.2016.01.001

Ward PG, Goff M, Donner M et al (2006) A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol 40:2433–2437. https://doi.org/10.1021/es0517668

Wu S, Butt HJ (2017) Near-infrared photochemistry at interfaces based on upconverting nanoparticles. Phys Chem Chem Phys PCCP 19:23585–23596. https://doi.org/10.1039/c7cp01838j

Wu SC, Liou SZ, Lee CM (2012) Correlation between bio-hydrogen production and polyhydroxybutyrate (PHB) synthesis by Rhodopseudomonas palustris WP3-5. Bioresour Technol 113:44–50. https://doi.org/10.1016/j.biortech.2012.01.090

Zagrodnik R, Laniecki M (2015) The role of pH control on biohydrogen production by single stage hybrid dark- and photo-fermentation. Bioresour Technol 194:187–195. https://doi.org/10.1016/j.biortech.2015.07.028

Zhi R, Yang A, Zhang G et al (2019) Effects of light-dark cycles on photosynthetic bacteria wastewater treatment and valuable substances production. Bioresour Technol 274:496–501. https://doi.org/10.1016/j.biortech.2018.12.021

Zhou Q, Zhang P, Zhang G (2014) Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: Effects of light intensity. Bioresour Technol 171:330–335. https://doi.org/10.1016/j.biortech.2014.08.088

Zhou Q, Zhang P, Zhang G (2015a) Biomass and pigments production in photosynthetic bacteria wastewater treatment: Effects of light sources. Bioresour Technol 179:505–509. https://doi.org/10.1016/j.biortech.2014.12.077

Zhou Q, Zhang P, Zhang G, Peng M (2015b) Biomass and pigments production in photosynthetic bacteria wastewater treatment: Effects of photoperiod. Bioresour Technol 190:196–200. https://doi.org/10.1016/j.biortech.2015.04.092

Zhu C, Nomura CT, Perrotta JA et al (2010) Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol Prog 26:424–430. https://doi.org/10.1002/btpr.355