The application of chattering-free sliding mode controller in coupled tank liquid-level control system
Tóm tắt
A chattering-free sliding mode controller (CFSMC) is proposed to realize level position control of liquid level system for two coupled water tanks, as is often encountered in practical process control. The controller is used due to its robustness against large parameter variation, disturbances rejection and reduction in chattering. Experimentation of the coupled tank system is realized in two different configurations: configuration 1 and configuration 2. In configuration 1, the water level in the top tank is controlled by a pump. In 2, the water level in the bottom tank is controlled by the water flow coming out of the top tank. The validity of the proposed controller is verified by means of a practical testing on an experimental liquid level control device.
Tài liệu tham khảo
S. Tunyasrirut, T. Suksri, A. Numsomran, S. Gulpanich and K. Tirasesth, Proceedings of World Academy of Science, Eng. Technol., 12, 134 (2006).
W. Gou, Research of intelligent PID and its application in the water level control, Anhui Agricultural University (2008).
K. Liu, Advanced PID control and matlab simulation, Publishing House of Electronics Industry (2004).
X. L. Fang, T. Shen and X. S. Feng, The Bang-Bang control of water tank system based on fuzzy decision, in Proceedings of the ninth International Conference on Hybrid Intelligent Systems, IEEE Press, 127 (August, 2009).
A. Khoei, Kh. Hadidi, M. R. Khorasani and R. Amirkhanzadeh, Fuzzy Sets Syst., 150, 507 (2005).
Yu Jianjiang and Zhang Tianping, Fuzzy Systems and Mathematics, 20(3), 124 (2006).
Qi Li, Yanjun Fang, Jizhong Song and Ji Wang, Measuring Technology and Mechatronics Automation, IEEE 3, 13–14, 776 (2010).
T. Hou, J. Lanzhou Jiaotong University, 28(3), 41 (2009).
J. T. Evans, J. B. Gomm, D. Williams and P. J.G. Lisboa, Implementation and performance evaluation of an on-line neural network control scheme, Presented at International Conference on Control (1994).
M. S. Ramli, R M.T. Raja Ismail, M. A. Ahmad, S. Mohamad Nawi and M.A. Mat Hussin, American J. Eng. Appl. Sci., 2(4), 669 (2009).
T. P. Zhang and S. S. Ge, Automatica, 43, 1021 (2007).
S. J. Huang and K. C. Chiou, J. Int. Robot Syst., 46, 285 (2006).
K. C. Tan and Y. Li, Engineering Applications of Artificial Intelligence, 14(4), 473 (2001).
R. A. Krohling and J. P. Rey, IEEE Trans. Evol. Comput., 5, 78 (2001).
K. C. Ng, Y. Li, D. J. Murray-Smith and K. C. Sharman, Genetic algorithms applied to fuzzy sliding mode controller design, Presented at First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications (1995).
B. Moshiri, M. Jalili-Kharaajoo and F. Besharati, Emerging Technologies and Factory Automation, IEEE, 2, 16–19, 169 (2003).
R. Benayache, L. Chrifi-Alaoui, P. Bussy and J.M. Castelain, Design and implementation of sliding mode controller with varying boundary layer for a coupled tanks system, 17 th Mediterranean Conference on Control & Automation, 1215 (2009).
T. Floquet, S. K. Spurgeon and C. Edwards, International Journal of Robust and Nonlinear Control, 21(2) (2010).
D.W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drives, Oxford University Press Inc., New York (1996).
K. Jezernik, M. Rodic, R. Safaric and B. Curk, B., Robotica, 15(1), 23 (1997).
A. Sabanovic, K. Jezernik and K. Wada, Robotica, 14, 17 (1996).
A. Derdiyok and M. Levent, Korean J. Chem. Eng., 17(6), 619 (2000).
Quanser-Two Tank Manual, Document No:553, Rev.03 (2005).