The application of a spectrophotometric method to determine pH in acidic (pH<5) soils
Tài liệu tham khảo
Essington, 2015
Lindsay, 1979
Gandois, 2010, Modelling trace metal extractability and solubility in French forest soils by using soil properties, Eur. J. Soil. Sci., 61, 271, 10.1111/j.1365-2389.2009.01215.x
Simpson, 2010, Climate-driven mobilisation of acid and metals from acid sulfate soils, Mar. Freshw. Res., 61, 129, 10.1071/MF09066
Simpson, 2014, Metal speciation and potential bioavailability changes during discharge and neutralisation of acidic drainage water, Chemosphere, 103, 172, 10.1016/j.chemosphere.2013.11.059
Sauvé, 2000, Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter, Environ. Sci. Technol., 34, 1125, 10.1021/es9907764
Isbell, 2016
Soil Science Division Staff, 2017
Yuan, 2008, Evaluation of indicator-based pH measurements for freshwater over a wide range of buffer intensities, Environ. Sci. Technol., 42, 6092, 10.1021/es800829x
Millero, 1986, The pH of estuarine waters, Limnol. Oceanogr., 31, 839, 10.4319/lo.1986.31.4.0839
Skoog, 2007
Wiesner, 2006, The impact of ionic strength and background electrolyte on pH measurements in metal ion adsorption experiments, J. Colloid Interface Sci., 301, 329, 10.1016/j.jcis.2006.05.011
Yao, 2001, Spectrophotometric determination of freshwater pH using bromocresol purple and phenol red, Environ. Sci. Technol., 35, 1197, 10.1021/es001573e
Bates, 1973, Determination of pH: theory and practice, J. Electrochem. Soc., 120, 10.1149/1.2403829
Byrne, 1989, High precision multiwavelength pH determinations in seawater using cresol red, Deep-Sea Res., 36, 803, 10.1016/0198-0149(89)90152-0
Bargrizan, 2017, Development of a spectrophotometric method for determining pH of soil extracts and comparison with glass electrode measurements, Soil Sci. Soc. Am. J., 81, 1350, 10.2136/sssaj2017.04.0119
Clayton, 1993, Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results, Deep-Sea Res. Part I: Oceanogr. Res. Pap., 40, 2115, 10.1016/0967-0637(93)90048-8
Mosley, 2004, Spectrophotometric pH measurement in estuaries using thymol blue and m-cresol purple, Mar. Chem., 91, 175, 10.1016/j.marchem.2004.06.008
Lai, 2016, Spectrophotometric measurement of freshwater pH with purified meta‐cresol purple and phenol red, Limnol. Oceanogr. Methods, 14, 864, 10.1002/lom3.10137
Byrne, 1988, Seawater pH measurements: an at-sea comparison of spectrophotometric and potentiometric methods, Deep-Sea Res. Part A: Oceanogr. Res. Pap., 35, 10.1016/0198-0149(88)90091-X
Breland, 1993, Spectrophotometric procedures for determination of sea water alkalinity using bromocresol green, Deep-Sea Res. Part I: Oceanogr. Res. Pap., 40, 629, 10.1016/0967-0637(93)90149-W
King, 1989, Determination of seawater pH from 1.5 to 8.5 using colorimetric indicators, Mar. Chem., 26, 5, 10.1016/0304-4203(89)90061-3
L.J. Pons, Outline of the genesis, characteristics, classification and improvement of acid sulphate soils, in: H. Dost (Eds.), Proceedings of the 1972, International Acid Sulphate Soils Symposium, Volume 1, 18. International Land Reclamation Institute Publication, Wageningen, Netherlands, 1973, pp. 3–27.
R.W. Fitzpatrick, G. Grealish, P. Shand, R. Merry, N. Creeper, M. Thomas, A. Baker, B. Thomas, W. Hicks, and N. Jayalath, Chip-tray incubation, A new field and laboratory method to support Acid Sulfate Soil Hazard Assessment, Classification and Communication, In: R.J. Gilkes, and N. Prakongkep (Eds.), Proceedings of the 19th World Congress of Soil Science; Soil Solutions for a Changing World, ISBN 987-0-646-53783-2; published on DVD. 〈http://www.iuss.org; Symposium WG 3.1 Processes in acid sulfate soil materials〉 Brisbane, Australia, IUSS, (Accessed 1–6 August 2010), pp. 28-31.
Creeper, 2012, A simplified incubation method using chip‐trays as incubation vessels to identify sulphidic materials in acid sulphate soils, Soil Use Manag., 28, 401, 10.1111/j.1475-2743.2012.00422.x
Astrom, 2000, Abundance, sources and speciation of trace elements in humus-rich streams affected by acid sulphate soils, Aquat. Geochem., 6, 367, 10.1023/A:1009658231768
Sundstrom, 2002, Comparison of the metal content in acid sulfate soil runoff and industrial effluents in Finland, Environ. Sci. Technol., 36, 4269, 10.1021/es020022g
Macdonald, 2007, Discharge of weathering products from acid sulfate soils after a rainfall event, Tweed River. Eastern Australia, Appl. Geochem., 22, 2695, 10.1016/j.apgeochem.2007.07.004
Toivonen, 2011, Characterization of acid sulfate soils and assessing their impact on a humic boreal lake, J. Geochem. Explor., 110, 107, 10.1016/j.gexplo.2011.04.003
Mosley, 2014, Changes in acidity and metal geochemistry in soils, groundwater, drain and river water in the lower Murray River after a severe drought, Sci. Total Environ., 485, 281, 10.1016/j.scitotenv.2014.03.063
Chamier, 2015, Aluminium (Al) fractionation and speciation; getting closer to describing the factors influencing Al(3+) in water impacted by acid mine drainage, Chemosphere, 130, 17, 10.1016/j.chemosphere.2015.01.026
Fanning, 2017, Historical developments in the understanding of acid sulfate soils, Geoderma, 308, 191, 10.1016/j.geoderma.2017.07.006
Yuan, 2016, Global risks of severe acidification of acid sulfate soils due to increasing drought and the importance of organic matter for mitigation, 1, 176
Soil Survey Staff, 2014
Fitzpatrick, 2013, Demands on soil classification and soil survey strategies: special-purpose soil classification systems for local practical use, 51
Stumm, 1996, 1022
Rayment, 2011
Griffin, 1973, Estimation of activity coefficients from the electrical conductivity of natural aquatic systems and soil extracts, Soil Sci., 116, 26, 10.1097/00010694-197307000-00005
Gillman, 1978, Soil Solution Studies on Weathered Soils from tropical North Queensland, Aust. J. Soil Res., 16, 67, 10.1071/SR9780067
Bishop, 1972
Douglas, 2017, Spectrophotometric pH measurements from river to sea: calibration of mCP for 0≤S≤40 and 278.15≤T≤308.15 K, Mar. Chem., 197, 64, 10.1016/j.marchem.2017.10.001
Shaw, 2009, Geochemical and mineralogical impacts of H 2SO4 on clays between pH 5.0 and −3.0, Appl. Geochem., 24, 333, 10.1016/j.apgeochem.2008.10.011
Blossfeld, 2007, A novel non-invasive optical method for quantitative visualization of pH dynamics in the rhizosphere of plants, Plant Cell Environ., 30, 176, 10.1111/j.1365-3040.2006.01616.x