The antihyperlipidemic effects of fullerenol nanoparticles via adjusting the gut microbiota in vivo

Juan Li1, Runhong Lei1, Xin Li2, Fei Xiong1, Quanyang Zhang2, Yue Zhou2, Shengmei Yang1, Yanan Chang1, Kui Chen1, Weihong Gu1, Chongming Wu2, Gengmei Xing1
1CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
2Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther. 2008;835:761–769. <Go to ISI>://WOS:000255288100025.

Jiao F, Liu Y, Qu Y, Li W, Zhou GQ, Ge CC, et al. Studies on anti-tumor and antimetastatic activities of fullerenol in a mouse breast cancer model. Carbon. 2010;488:2231–2243. <Go to ISI>://WOS:000277780500012.

Meng H, Xing GM, Sun BY, Zhao F, Lei H, Li W, et al. Potent Angiogenesis Inhibition by the Particulate Form of Fullerene Derivatives. Acs Nano. 2010;45:2773–2783. <Go to ISI>://WOS:000277976900037.

Roursgaard M, Poulsen SS, Kepley CL, Hammer M, Nielsen GD, Larsen ST. Polyhydroxylated C(60) fullerene (fullerenol) attenuates neutrophilic lung inflammation in mice. Basic Clin Pharmacol Toxicol. 2008;103 4:386–388. <Go to ISI>://WOS:000259272100015.

Han LQ, Wang TQ, Wu JL, Yin XL, Fang H, Zhang N. A facile route to form self-carried redox-responsive vorinostat nanodrug for effective solid tumor therapy. Int J Nanomedicine. 2016;11:6003–6022. <Go to ISI>://WOS:000387443100001.

Osuka S, Van Meir EG. CANCER THERAPY Neutrophils traffic in cancer nanodrugs. Nat Nanotechnology. 2017;12 7:616–618. <Go to ISI>://WOS:000404874000009.

Clemente JC, Ursell LK, Parfrey LW, Knight R. The Impact of the Gut Microbiota on Human Health: An Integrative View. Cell. 2012;148 6:1258–1270. <Go to ISI>://WOS:000301889500020.

Qin JJ, Li YR, Cai ZM, Li SH, Zhu JF, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490 7418:55–60. <Go to ISI>://WOS:000309446800031.

Ridaura VK, Faith JJ, Rey FE, Cheng JY, Duncan AE, Kau AL, et al. Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice. Science. 2013;341 6150:1079-1U49. <Go to ISI>://WOS:000323933100034.

Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727–35. https://doi.org/10.1136/gutjnl-2012-303839 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585776/

Zhang X, Zhao YF, Xu J, Xue ZS, Zhang MH, Pang XY, et al. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Scientific Reports. 2015;5:14405. <Go to ISI>://WOS:000361598400001.

Chang CJ, Lin CS, Lu CC, Martel J, Ko YF, Ojcius DM, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun. 2015;6:7489. <Go to ISI>://WOS:000357178100009.

Zhang DY, Ji HF, Liu H, Wang SX, Wang J, Wang YM. Changes in the diversity and composition of gut microbiota of weaned piglets after oral administration of Lactobacillus or an antibiotic. Appl Microbiol Biotechnol. 2016;100 23:10081–10093. <Go to ISI>://WOS:000387656500023.

Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65 3:426–436. <Go to ISI>://WOS:000371321700011.

van den Brule S, Ambroise J, Lecloux H, Levard C, Soulas R, De Temmerman PJ, et al. Dietary silver nanoparticles can disturb the gut microbiota in mice. Part Fibre Toxicol. 2016;13:38–54. <Go to ISI>://WOS:000379264300001.

Christophersen DV, Jacobsen NR, Andersen MH, Connell SP, Barfod KK, Thomsen MB, et al. Cardiovascular health effects of oral and pulmonary exposure to multi-walled carbon nanotubes in ApoE-deficient mice. Toxicology. 2016;371:29–40. https://doi.org/10.1016/j.tox.2016.10.003 . http://www.sciencedirect.com/science/article/pii/S0269749113003187

Zhang L, Petersen EJ, Habteselassie MY, Mao L, Huang Q. Degradation of multiwall carbon nanotubes by bacteria. Environ Pollut. 2013;181:335–9. https://doi.org/10.1016/j.envpol.2013.05.058 . https://link.springer.com/article/10.1007/s11356-016-6474-y

Yausheva capital Ie C, Sizova capital Ie C, Lebedev S, Skalny A, Miroshnikov S, Plotnikov A, et al. Influence of zinc nanoparticles on survival of worms Eisenia fetida and taxonomic diversity of the gut microflora. Environ Sci Pollut Res Int. 2016;23(13):13245–54. https://doi.org/10.1007/s11356-016-6474-y . http://www.tandfonline.com/doi/abs/10.3109/17435390.2015.1078854

Wilding LA, Bassis CM, Walacavage K, Hashway S, Leroueil PR, Morishita M, et al. Repeated dose (28-day) administration of silver nanoparticles of varied size and coating does not significantly alter the indigenous murine gut microbiome. Nanotoxicology. 2016;10(5):513–20. https://doi.org/10.3109/17435390.2015.1078854 . https://particleandfibretoxicology.biomedcentral.com/articles/10.1186/s12989-016-0149-1

van den Brule S, Ambroise J, Lecloux H, Levard C, Soulas R, De Temmerman PJ, et al. Dietary silver nanoparticles can disturb the gut microbiota in mice. Part Fibre Toxicol. 2016;13(1):38. https://doi.org/10.1186/s12989-016-0149-1 . http://pubs.acs.org/doi/abs/10.1021/nn900318y

Chaudhuri P, Paraskar A, Soni S, Mashelkar RA, Sengupta S. Fullerenol-Cytotoxic Conjugates for Cancer Chemotherapy. Acs Nano. 2009;3 9:2505–2514. <Go to ISI>://WOS:000269988600011.

Aoshima H, Kokubo K, Shirakawa S, Ito M, Yamana S, Oshima T. Antimicrobial Activity of Fullerenes and Their Hydroxylated Derivatives. Biocontrol Sci. 2009;14 2:69–72. <Go to ISI>://WOS:000267195400005.

Yin R, Wang M, Huang YY, Landi G, Vecchio D, Chiang LY, et al. Antimicrobial photodynamic inactivation with decacationic functionalized fullerenes: oxygen-independent photokilling in presence of azide and new mechanistic insights. Free Radic Biol Med. 2015;79:14–27. https://doi.org/10.1016/j.freeradbiomed.2014.10.514 . http://www.sciencedirect.com/science/article/pii/S0008622311007342

Li J, Zhang MY, Sun BY, Xing GM, Song Y, Guo HL, et al. Separation and purification of fullerenols for improved biocompatibility. Carbon. 2012;50 2:460–469. <Go to ISI>://WOS:000297397700014.

Mo H. China PsRo. Chinese National Formulary. 2005:535. http://iopscience.iop.org/article/10.1088/0957-4484/27/15/155101/meta

Li J, Yang WJ, Cui RL, Wang DL, Chang YA, Gu WH, et al. Metabolizer in vivo of fullerenes and metallofullerenes by positron emission tomography. Nanotechnology. 2016;27 15:1–12. <Go to ISI>://WOS:000371343500004.

Perez-Lopez E, Cela D, Costabile A, Mateos-Aparicio I, Ruperez P. In vitro fermentability and prebiotic potential of soyabean Okara by human faecal microbiota. Br J Nutr. 2016;116 6:1116–1124. <Go to ISI>://WOS:000382996100017.

Hamady M, Lozupone C, Knight R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. Isme J. 2010;4 1:17–27. <Go to ISI>://WOS:000273350200002.

Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80. https://doi.org/10.1038/nature09944 . http://science.sciencemag.org/content/341/6145/569

Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al. The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic T-reg Cell Homeostasis. Science. 2013;341 6145:569–573. <Go to ISI>://WOS:000322586700059.

Wang ZZ, Lu ZH, Zhao YL, Gao XF. Oxidation-induced water-solubilization and chemical functionalization of fullerenes C-60, Gd@C-60 and Gd@C-82: atomistic insights into the formation mechanisms and structures of fullerenols synthesized by different methods. Nanoscale. 2015;7 7:2914–2925. <Go to ISI>://WOS:000349473200013.

Yin JJ, Lao F, Fu PP, Wamer WG, Zhao YL, Wang PC, et al. The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials. 2009;30 4:611–621. <Go to ISI>://WOS:000262065500023.

Kim M, Qie YQ, Park J, Kim CH. Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host Microbe. 2016;20 2:202–214. <Go to ISI>://WOS:000381587500012.

Rau M, Rehman A, Levels H, Weiss J, Beyersdorf N, Rosenstiel P, et al. Short-chain fatty acids and SCFA-producing bacteria in NAFLD patients are associated with an increased Th17/rTreg ratio and hepatic disease progression. Journal of Hepatology. 2017;66 1:S600-S60S. <Go to ISI>://WOS:000401056601474.

Sharma S, Puri S. Prebiotics and Lipid Metabolism: A Review. Altern Ther Health Med. 2015;21:34–42. <Go to ISI>://WOS:000368749200005.

Wang ZZ, Wang SK, Lu ZH, Gao XF. Syntheses, Structures and Antioxidant Activities of Fullerenols: Knowledge Learned at the Atomistic Level. Journal of Cluster Science. 2015;26 2:375–388. <Go to ISI>://WOS:000351310300006.

Zhang G, Liu Y, Liang DH, Gan LB, Li Y. Facile Synthesis of Isomerically Pure Fullerenols and Formation of Spherical Aggregates from C-60(OH)(8). Angew Chem-Int Ed. 2010;49 31:5293–5295. <Go to ISI>://WOS:000280464200010.

Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81 3:1031–1064. <Go to ISI>://WOS:000169570800003.