The anisotropic thermistor problem with degenerate thermal and electric conductivities

Springer Science and Business Media LLC - Tập 9 - Trang 901-918 - 2023
Noureddine Benaichouche1,2, Hocine Ayadi2,3, Fares Mokhtari4
1Department of Mathematics, Faculty of exact science, Djillali Liabes University, Sidi Bel Abbes, Algeria
2Department of Mathematics and Computer Science, Faculty of Sciences, University of Medea, Medea, Algeria
3Laboratory of Mathematics and its Applications (LaMA), University of Medea, Medea, Algeria
4Laboratory of Mathematical Analysis and Applications, University of Algiers 1, Algiers, Algeria

Tóm tắt

In this paper, we prove the existence and regularity of a capacity solution to the anisotropic thermistor problem with the thermal and the electrical conductivities are not bounded below by positive constants.

Tài liệu tham khảo

Antontsev, S.N., Chipot, M.: The thermistor problem: existence, smoothness, uniqueness, blowup. SIAM J. Math. Anal. 25, 1128–1156 (1994) Ayadi, H., Mokhtari, F.: Nonlinear anisotropic elliptic equations with variable exponents and degenerate coercivity. Electron. J. Differ. Equ. 2018, 1–23 (2018) Bahari, M., El Arabi, R., Rhoudaf, M.: Capacity solution for a perturbed nonlinear coupled system. Ricerche Mat. 69, 215–233 (2019) Bahari, M., Elarabi, R., Rhoudaf, M.: Existence of capacity solution for a perturbed nonlinear coupled system. J Ellipt. Parabol Equ. 7, 101–119 (2021) Chipot, M., Cimatti, G.: A uniqueness result for the thermistor problem. Eur. J. Appl. Math. 2, 97–103 (1991) Fragalà, I., Gazzola, F.: Existence and nonexistence results for anisotropic quasilinear equations. Ann. I. H. Poincaré-AN 21, 715–734 (2004) Gonzàlez Montesinos, M.T., Ortegón Gallego, F.: The evolution thermistor problem with degenerate thermal conductivity. Commun. Pure Appl. Anal. 1(3), 313–325 (2002) Gonzàlez Montesinos, M.T., Ortegón Gallego, F.: Existence of a capacity solution to a coupled nonlinear parabolic-elliptic system. Commun. Pure Appl. Anal. 6(1), 23–42 (2007) Gonzàlez Montesinos, M.T., Ortegón Gallego, F.: The evolution thermistor problem under the Wiedemann–Franz law with metallic conduction. Discrete Contin. Dyn. Syst. 2007, 901–923 (2007) Leray, J., Lions, J.L.: Quelques résulatats de Višik sur les problm̀es elliptiques non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93, 97–107 (1965) Moussa, H., Ortegón, G.F., Rhoudaf, M.: Capacity solution to a coupled system of parabolic-elliptic equations in Orlicz–Sobolev spaces. Nonlinear Differ. Equ. Appl. 25(14), 1–37 (2018) Ortegón Gallego, F., Ouyahya, H., Rhoudaf, M.: Existence of a solution and its numerical approximation for a strongly nonlinear coupled system in anisotropic Orlicz–Sobolev spaces. Electron. J. Differ. Equ. 2020, 1–32 (2022) Ortegón Gallego, F., Rhoudaf, M., Talbi, H.: Capacity solution and numerical approximation to a nonlinear coupled elliptic system in anisotropic Sobolev spaces. J. Appl. Anal. Comput. 12, 1–24 (2022) Rákosník, J.: Some remarks to anisotropic Sobolev spaces I. Beiträge zur Anal. 13, 55–68 (1979) Rákosník, J.: Some remarks to anisotropic Sobolev spaces II. Beiträge zur Anal. 15, 127–140 (1981) Troisi, M.: Teoremi di inclusione per spazi di Sobolev non isotropi. Ricerche Mat. 18, 3–24 (1969) Xu, X.: A strongly degenerate system involving an equation of parabolic type and an equation of elliptic type. Commun. Partial Differ. Equ. 18, 199–213 (1993)