The anisotropic thermistor problem with degenerate thermal and electric conductivities
Tóm tắt
In this paper, we prove the existence and regularity of a capacity solution to the anisotropic thermistor problem with the thermal and the electrical conductivities are not bounded below by positive constants.
Tài liệu tham khảo
Antontsev, S.N., Chipot, M.: The thermistor problem: existence, smoothness, uniqueness, blowup. SIAM J. Math. Anal. 25, 1128–1156 (1994)
Ayadi, H., Mokhtari, F.: Nonlinear anisotropic elliptic equations with variable exponents and degenerate coercivity. Electron. J. Differ. Equ. 2018, 1–23 (2018)
Bahari, M., El Arabi, R., Rhoudaf, M.: Capacity solution for a perturbed nonlinear coupled system. Ricerche Mat. 69, 215–233 (2019)
Bahari, M., Elarabi, R., Rhoudaf, M.: Existence of capacity solution for a perturbed nonlinear coupled system. J Ellipt. Parabol Equ. 7, 101–119 (2021)
Chipot, M., Cimatti, G.: A uniqueness result for the thermistor problem. Eur. J. Appl. Math. 2, 97–103 (1991)
Fragalà, I., Gazzola, F.: Existence and nonexistence results for anisotropic quasilinear equations. Ann. I. H. Poincaré-AN 21, 715–734 (2004)
Gonzàlez Montesinos, M.T., Ortegón Gallego, F.: The evolution thermistor problem with degenerate thermal conductivity. Commun. Pure Appl. Anal. 1(3), 313–325 (2002)
Gonzàlez Montesinos, M.T., Ortegón Gallego, F.: Existence of a capacity solution to a coupled nonlinear parabolic-elliptic system. Commun. Pure Appl. Anal. 6(1), 23–42 (2007)
Gonzàlez Montesinos, M.T., Ortegón Gallego, F.: The evolution thermistor problem under the Wiedemann–Franz law with metallic conduction. Discrete Contin. Dyn. Syst. 2007, 901–923 (2007)
Leray, J., Lions, J.L.: Quelques résulatats de Višik sur les problm̀es elliptiques non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93, 97–107 (1965)
Moussa, H., Ortegón, G.F., Rhoudaf, M.: Capacity solution to a coupled system of parabolic-elliptic equations in Orlicz–Sobolev spaces. Nonlinear Differ. Equ. Appl. 25(14), 1–37 (2018)
Ortegón Gallego, F., Ouyahya, H., Rhoudaf, M.: Existence of a solution and its numerical approximation for a strongly nonlinear coupled system in anisotropic Orlicz–Sobolev spaces. Electron. J. Differ. Equ. 2020, 1–32 (2022)
Ortegón Gallego, F., Rhoudaf, M., Talbi, H.: Capacity solution and numerical approximation to a nonlinear coupled elliptic system in anisotropic Sobolev spaces. J. Appl. Anal. Comput. 12, 1–24 (2022)
Rákosník, J.: Some remarks to anisotropic Sobolev spaces I. Beiträge zur Anal. 13, 55–68 (1979)
Rákosník, J.: Some remarks to anisotropic Sobolev spaces II. Beiträge zur Anal. 15, 127–140 (1981)
Troisi, M.: Teoremi di inclusione per spazi di Sobolev non isotropi. Ricerche Mat. 18, 3–24 (1969)
Xu, X.: A strongly degenerate system involving an equation of parabolic type and an equation of elliptic type. Commun. Partial Differ. Equ. 18, 199–213 (1993)