The alignment of the substrate nanofibers directing cellular energy metabolism
Tài liệu tham khảo
Khademhosseini, 2016, A decade of progress in tissue engineering, Nat. Protoc., 11, 1775, 10.1038/nprot.2016.123
Chen, 2016, Advancing biomaterials of human origin for tissue engineering, Prog. Polym. Sci., 53, 86, 10.1016/j.progpolymsci.2015.02.004
Zhang, 2021, Electroactive electrospun nanofibers for tissue engineering, Nano Today, 39, 10.1016/j.nantod.2021.101196
Xue, 2020, Promoting cell migration and neurite extension along uniaxially aligned nanofibers with biomacromolecular particles in a density gradient, Adv. Funct. Mater., 30, 10.1002/adfm.202002031
Yu, 2020, Modulating cellular hepatic fibrosis with anisotropic wrinkled topography, Colloid Interface Sci. Commun., 38, 10.1016/j.colcom.2020.100303
Xue, 2019, Electrospinning and electrospun nanofibers: methods, materials, and applications, Chem. Rev., 119, 5298, 10.1021/acs.chemrev.8b00593
Xue, 2017, Electrospun nanofibers: new concepts, materials, and applications, Acc. Chem. Res., 50, 1976, 10.1021/acs.accounts.7b00218
Jun, 2018, Electrospun fibrous scaffolds for tissue engineering: viewpoints on architecture and fabrication, Int. J. Mol. Sci., 19, 10.3390/ijms19030745
Braghirolli, 2014, Electrospinning for regenerative medicine: a review of the main topics, Drug Discov. Today, 19, 743, 10.1016/j.drudis.2014.03.024
Rahmati, 2021, Electrospinning for tissue engineering applications, Prog. Mater. Sci., 117, 10.1016/j.pmatsci.2020.100721
Bashur, 2006, Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes, Biomaterials, 27, 5681, 10.1016/j.biomaterials.2006.07.005
Terranova, 2016, Polystyrene scaffolds based on microfibers as a bone substitute; development and in vitro study, Acta Biomater., 29, 380, 10.1016/j.actbio.2015.10.042
Liu, 2009, Effects of fiber orientation and diameter on the behavior of human dermal fibroblasts on electrospun PMMA scaffolds, J. Biomed. Mater. Res. A, 90a, 1092, 10.1002/jbm.a.32165
Lu, 2012, The effects of PHBV electrospun fibers with different diameters and orientations on growth behavior of bone-marrow-derived mesenchymal stem cells, Biomed. Mater., 7, 10.1088/1748-6041/7/1/015002
Badami, 2006, Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates, Biomaterials, 27, 596, 10.1016/j.biomaterials.2005.05.084
Wang, 2018, Facile strategy to generate aligned polymer nanofibers: effects on cell adhesion, ACS Appl. Mater. Interfaces, 10, 1566, 10.1021/acsami.7b16057
Lee, 2005, Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast, Biomaterials, 26, 1261, 10.1016/j.biomaterials.2004.04.037
Navale, 2016, Glucose transporters: physiological and pathological roles, Biophys. Rev., 8, 5, 10.1007/s12551-015-0186-2
Kaplan, 1969, Hexokinase isoenzymes, N. Engl. J. Med., 280, 1129, 10.1056/NEJM196905152802017
Weber, 1977, Enzymology of cancer cells (first of two parts), N. Engl. J. Med., 296, 486, 10.1056/NEJM197703032960905
El-Maghrabi, 2001, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: suiting structure to need, in a family of tissue-specific enzymes, Curr. Opin. Clin. Nutr. Metab. Care, 4, 411, 10.1097/00075197-200109000-00012
Van Schaftingen, 1981, Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors, Proc. Natl. Acad. Sci. U. S. A., 78, 3483, 10.1073/pnas.78.6.3483
Vander Heiden, 2010, Evidence for an alternative glycolytic pathway in rapidly proliferating cells, Science, 329, 1492, 10.1126/science.1188015
Chae, 2016, Mitochondrial Akt regulation of hypoxic tumor reprogramming, Cancer Cell, 30, 257, 10.1016/j.ccell.2016.07.004
Hu, 2016, Energy metabolism plays a critical role in stem cell maintenance and differentiation, Int. J. Mol. Sci., 17, 10.3390/ijms17020253
Folmes, 2012, Metabolic plasticity in stem cell homeostasis and differentiation, Cell Stem Cell, 11, 596, 10.1016/j.stem.2012.10.002
Esen, 2014, Aerobic glycolysis in osteoblasts, Curr. Osteoporos Rep., 12, 433, 10.1007/s11914-014-0235-y
Karner, 2018, Glucose metabolism in bone, Bone, 115, 2, 10.1016/j.bone.2017.08.008
Esen, 2013, WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation, Cell Metab., 17, 745, 10.1016/j.cmet.2013.03.017
Deng, 2017, Nanopatterned adhesive, stretchable hydrogel to control ligand spacing and regulate cell spreading and migration, ACS Nano, 11, 8282, 10.1021/acsnano.7b03449
Liu, 2022, Topographic cues guiding cell polarization via distinct cellular mechanosensing pathways, Small, 18
Wei, 2014, Protein interactions with polymer coatings and biomaterials, Angew. Chem. Int. Ed. Eng., 53, 8004, 10.1002/anie.201400546
Zhao, 2020, Recent advances of designing dynamic surfaces to regulate cell adhesion, Colloid Interface Sci. Commun., 35, 10.1016/j.colcom.2020.100249
Wang, 2019, Fabrication of electrospun polymer nanofibers with diverse morphologies, Molecules, 24
Dai, 2020, Biointerface mediates cytoskeletal rearrangement of pancreatic cancer cell and modulates its drug sensitivity, Colloid Interface Sci. Commun., 35, 10.1016/j.colcom.2020.100250
Zhang, 2017, Non-muscle (NM) myosin heavy chain phosphorylation regulates the formation of NM myosin filaments, adhesome assembly and smooth muscle contraction, J. Physiol., 595, 4279, 10.1113/JP273906
Regan, 2014, Up-regulation of glycolytic metabolism is required for HIF1α-driven bone formation, Proc. Natl. Acad. Sci. U. S. A., 111, 8673, 10.1073/pnas.1324290111
Esen, 2015, PTH promotes bone anabolism by stimulating aerobic glycolysis via IGF signaling, J. Bone Miner. Res., 30, 1959, 10.1002/jbmr.2556
Lee, 2020, Malic enzyme couples mitochondria with aerobic glycolysis in osteoblasts, Cell Rep., 32, 10.1016/j.celrep.2020.108108
Kyselica, 2021, Method for production of aligned nanofibers and fiber elasticity measurement, J. Mech. Behav. Biomed., 113, 10.1016/j.jmbbm.2020.104151
Parsons, 2010, Cell adhesion: integrating cytoskeletal dynamics and cellular tension, Nat. Rev. Mol. Cell Biol., 11, 633, 10.1038/nrm2957
Park, 2020, Mechanical regulation of glycolysis via cytoskeleton architecture, Nature, 578, 621, 10.1038/s41586-020-1998-1
Hu, 2016, Phosphoinositide 3-kinase regulates glycolysis through mobilization of aldolase from the actin cytoskeleton, Cell, 164, 433, 10.1016/j.cell.2015.12.042