The affinely invariant distance correlation
Tóm tắt
Từ khóa
Tài liệu tham khảo
[1] Andrews, G.E., Askey, R. and Roy, R. (1999). <i>Special Functions. Encyclopedia of Mathematics and Its Applications</i> <b>71</b>. Cambridge: Cambridge Univ. Press.
[2] Eaton, M.L. (1989). <i>Group Invariance Applications in Statistics. NSF-CBMS Regional Conference Series in Probability and Statistics</i> <b>1</b>. Hayward, CA: IMS.
[3] Gneiting, T., Larson, K., Westrick, K., Genton, M.G. and Aldrich, E. (2006). Calibrated probabilistic forecasting at the Stateline wind energy center: The regime-switching space-time method. <i>J. Amer. Statist. Assoc.</i> <b>101</b> 968–979.
[4] Gorfine, M., Heller, R. and Heller, Y. (2012). Comment on “Detecting novel associations in large data sets.” Unpublished manuscript. Available at <a href="http://iew3.technion.ac.il/~gorfinm/files/science6.pdf">http://iew3.technion.ac.il/~gorfinm/files/science6.pdf</a>.
[5] Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B. and Smola, A. (2012). A kernel two-sample test. <i>J. Mach. Learn. Res.</i> <b>13</b> 723–773.
[6] Gross, K.I. and Richards, D.S.P. (1987). Special functions of matrix argument. I. Algebraic induction, zonal polynomials, and hypergeometric functions. <i>Trans. Amer. Math. Soc.</i> <b>301</b> 781–811.
[7] Heller, R., Heller, Y. and Gorfine, M. (2013). A consistent multivariate test of association based on ranks of distances. <i>Biometrika</i> <b>100</b> 503–510.
[8] Hering, A.S. and Genton, M.G. (2010). Powering up with space-time wind forecasting. <i>J. Amer. Statist. Assoc.</i> <b>105</b> 92–104.
[9] James, A.T. (1964). Distributions of matrix variates and latent roots derived from normal samples. <i>Ann. Math. Statist.</i> <b>35</b> 475–501.
[10] Koev, P. and Edelman, A. (2006). The efficient evaluation of the hypergeometric function of a matrix argument. <i>Math. Comp.</i> <b>75</b> 833–846.
[11] Kosorok, M.R. (2009). Discussion of: Brownian distance covariance. <i>Ann. Appl. Stat.</i> <b>3</b> 1270–1278.
[12] Kosorok, M.R. (2013). Correction: Discussion of Brownian distance covariance. <i>Ann. Appl. Stat.</i> <b>7</b> 1247.
[14] Newton, M.A. (2009). Introducing the discussion paper by Székely and Rizzo. <i>Ann. Appl. Stat.</i> <b>3</b> 1233–1235.
[15] Rémillard, B. (2009). Discussion of: Brownian distance covariance. <i>Ann. Appl. Stat.</i> <b>3</b> 1295–1298.
[16] Reshef, D.N., Reshef, J.A., Finucane, H.K., Grossman, S.R., McVean, G., Turnbaugh, P.J., Lander, E.S., Mitzenmacher, M. and Sabeti, P.C. (2011). Detecting novel associations in large data sets. <i>Science</i> <b>334</b> 1518–1524.
[17] Rizzo, M.L. and Székely, G.J. (2011). Energy: E-statistics (energy statistics). R package, Version 1.4-0. Available at <a href="http://cran.us.r-project.org/web/packages/energy/index.html">http://cran.us.r-project.org/web/packages/energy/index.html</a>.
[18] Simon, N. and Tibshirani, R. (2012). Comment on “Detecting novel associations in large data sets,” by Reshef <i>et al. Science</i> <b>334</b> (2011) 1518–1524. Unpublished manuscript. Available at <a href="http://www-stat.stanford.edu/~tibs/reshef/comment.pdf">http://www-stat.stanford.edu/~tibs/reshef/comment.pdf</a>.
[19] Speed, T. (2011). Mathematics. A correlation for the 21st century. <i>Science</i> <b>334</b> 1502–1503.
[20] Székely, G.J. and Rizzo, M.L. (2009). Brownian distance covariance. <i>Ann. Appl. Stat.</i> <b>3</b> 1236–1265.
[21] Székely, G.J. and Rizzo, M.L. (2012). On the uniqueness of distance covariance. <i>Statist. Probab. Lett.</i> <b>82</b> 2278–2282.
[22] Székely, G.J. and Rizzo, M.L. (2013). The distance correlation $t$-test of independence in high dimension. <i>J. Multivariate Anal.</i> <b>117</b> 193–213.
[23] Székely, G.J., Rizzo, M.L. and Bakirov, N.K. (2007). Measuring and testing dependence by correlation of distances. <i>Ann. Statist.</i> <b>35</b> 2769–2794.
[24] Zhou, Z. (2012). Measuring nonlinear dependence in time-series, a distance correlation approach. <i>J. Time Series Anal.</i> <b>33</b> 438–457.